• 제목/요약/키워드: Interfacial Reaction

검색결과 404건 처리시간 0.024초

Nb/MoSi2적층복합재료의 제조 및 파괴특성 (Fabrication and Fracture Properties of Nb/MoSi2Laminate Composites)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1047-1052
    • /
    • 2002
  • The impact value, the interfacial shear strength, the tensile strength and the fracture strain of Nb/MoSi$_2$laminate composites, which were associated with the interfacial reaction layer, have been investigated. Three types of Nb/MoSi$_2$ laminate composites alternating sintered MoSi$_2$ layers and Nb foils were fabricated as the parameter of hot press temperature. The thickness of interfacial reaction layer of Nb/MoSi$_2$ laminate composites increased with increasing the fabrication temperature. The growth of interfacial reaction layer increased the interfacial shear strength and led to the decrease of impact value in Nb/MoSi$_2$ laminate composites. It was also found that in order to maximize the fracture energy of Nb/MoSi$_2$ laminate composites, interfacial shear strength and the thickness of interfacial reaction layer must be secured appropriately.

Impact Fracture and Shear Strength Characteristics on Interfacial Reaction Layer of Nb/MoSi2 Laminate Composite

  • Lee, Sang-Pill;Yoon, Han-Ki;Park, Won-Jo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제3권1호
    • /
    • pp.35-39
    • /
    • 2000
  • The present study dealt with the relationships among the interfacial shear strength, the thickness of interfacial reaction layer and the impact value of $Nb/MoSi_2$ laminate composites. In addition, the tensile test was conducted to evaluate the fracture strain of $Nb/MoSi_2$ laminate composites. To change the thickness of the reaction layer, $Nb/MoSi_2$ laminate composites alternating sintered MoSi2 layers and Nb foils were fabricated as the parameter of hot press temperature. It has been found that the growth of the reaction layer increases the interfacial shear strength and decreases the impact value by localizing a plastic deformation of Nb foil. There also exist appropriate shear strength and the thickness of the reaction layer, which are capable of maximizing the fracture energy of $Nb/MoSi_2$.

  • PDF

$Al/Al_2O_3$ 계면의 젖음특성 및 계면반응 (Wetting Characteristics and Interfacial Reaction at $Al/Al_2O_3$ Interface)

  • 권순용;정대영;최시경;구형회;이종수
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.815-822
    • /
    • 1994
  • Sessile drop studies of molten Al on single crystal sapphire substrate were conducted to understand the wetting behavior and interfacial reaction at Al/Al2O3 interface. To investigate the wetting mechanism, the variation in contact angle was determined with time. The contact angle obtained in this study decreased exponentially with time. This result means that the driving force for wetting is the reduction in interfacial energy between liquid Al and sapphire caused by the interfacial reaction. The closer examination revealed that the reaction was the dissolution of sapphire by molten Al. Ti has been frequently used to improve wetting on ceramic materials. Therefore, the influence of Ti content on the wetting behaviour was investigated in this work. The equilibrium wetting angles of pure Al, Al-0.3 wt%Ti, and Al-1.0 wt%Ti at 100$0^{\circ}C$ were 63$^{\circ}$, 59$^{\circ}$, and 54$^{\circ}$respectively. The difference is considered as the result of the change in interfacial energy caused by the reaction between Ti and sapphire and the interfacial reaction formed the reaction products of varying stoichiometry (TiO, Ti2O3, TiO2 etc.).

  • PDF

LSGM계 전해질 지지형 고체산화물 연료전지의 특성평가 (Characterization of the LSGM-Based Electrolyte-Supported SOFCs)

  • 송은화;김광년;정태주;손지원;김주선;이해원;김병국;이종호
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.270-276
    • /
    • 2006
  • LSGM(($La_xSr_{1-x})(Ga_yMg_{1-y})O_3$) electrolyte is known to show very serious interfacial reaction with other unit cell components, especially with an anode. Such an interfacial reaction induced the phase instability of constituent component and deterioration of the unit cell performance, which become the most challenging issues in LSGM-based SOFCs. In this study, we fabricated LSGM($La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_x$) electrolyte supported-type cell in order to avoid such interfacial problem by lowering the heat-treatment temperature of the electrode fabrication. According to the microstructural and phase analysis, there was no serious interfacial reaction at both electrolyte/anode and electrolyte/cathode interfaces. Moreover, from the electrochemical characterization of the unit cell performance, there was no distinct deterioration of the open cell voltage as well as an internal cell resistance. These results demonstrate the most critical point to be concerned in LSGM-based SOFC is either to find a proper electrode material which will not give any interfacial reaction with LSGM electrolyte or to properly adjust the processing variables for unit cell fabrication, to reduce the interfacial reaction.

Nb/MoSi2 접합재료의 계면 수정 및 특성 (Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향 (Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal)

  • 김인규;송준영;이영선;홍순익
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.

Improvement of Impact Properties for $Nb/MoSi_2$ Laminate Composites by the Interfacial Modification (II)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.830-835
    • /
    • 2000
  • The thermodynamical estimation of the interfacial reaction and the impact properties of $Nb/MoSi_2$ laminate composites containing SiC, $NbSi_2$ or $ZrO_2$ particles are investigated. Laminate composites, which comprise alternating layers of $MoSi_2$ with the particle and Nb foil, were fabricated by the hot press process. It is clearly found out that the interfacial reaction of $Nb/MoSi_2$ can be controlled by the addition of $ZrO_2$ particle to the $MoSi_2$ phase. The addition of $ZrO_2$ particle increases both the impact value and the sintered density of Nb/McSij, The suppression of the interfacial reaction is caused by the formation of $ZrSiO_2$ in $MoSi_2-ZrO_2$ matrix mixture.

  • PDF

수송기기 유압 실린더 블록 재료의 Fe-Cu 계면반응 특성 (A Characteristic of Fe-Cu Interfacial Reaction in the Hydraulic Cylinder Block for Vehicle Parts)

  • 김해지;김남경
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.90-94
    • /
    • 2004
  • Generally, a hydraulic cylinder block which is one of a vehicle parts that plays Important role in excavator power transmission, has copper alloy separation phenomenon by sliding motion between metals in high pressure condition. In this paper, to solve this problem, the interfacial reaction layer of Fe-Cu With SCM440 and copper alloy is studied through the melting method. As the result of this study, it is found that the interfacial reaction layer of $1{\mu}m$ created in the interface of Fe-Cu which has very strong physical bonding. It has been also confirmed that the melting method can improve life of the hydraulic cylinder block.

  • PDF

LSGM계 고체산화물 연료전지의 전기화학적 성능에 미치는 계면반응층의 영향 (Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs)

  • 김광년;문주호;김형철;손지원;김주선;이해원;이종호;김병국
    • 한국세라믹학회지
    • /
    • 제42권10호
    • /
    • pp.665-671
    • /
    • 2005
  • LSGM is known to show very serious interfacial reaction with other unit cell components, such as electrode, electrode functional or buffering layers. Especially, the formation of very resistive LaSr$Ga_{3}$$O_{7}$ phase at the interface of an anode and an electrolyte is the most problematic one in LSGM-based SOFCs. In this study, we investigated the interfacial reactions in LSGM-based SOFCs under different unit cell configurations. According to the microstructural analysis on the interfacial layer between an electrolyte and its neighboring component, serious interfacial reaction zone was observed. From the electrical and electrochemical characterization of the cell, we found such an interfacial reaction zone not only increased the internal ohmic resistance but also decreased the OCV(Open Cell Voltage) of the unit cell, and thus consequently deteriorated the unit cell performance.

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi;Jung, Deok-Ho;Chae, Su-In;Kwon, Young-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1679-1684
    • /
    • 2011
  • Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).