• Title/Summary/Keyword: Interfacial Layer

Search Result 676, Processing Time 0.027 seconds

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.

Durability Test and Micro-Damage Formation of Rubber Hose for Automotive Hydraulic Brake (자동차 유압브레이크용 고무호스의 내구성 시험 및 미세손상에 관한 연구)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Lim, Young-Han
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Rubber hose assembly for automotive hydraulic brake during operation is subject to combined stresses of cyclic pressure, cyclic bending and torsion as well as thermal load. The rubber hose is composed of ethylene-propylene diene monomer(EPDM) rubber layers reinforced by polyvinyl acetate(PVA) braided fabrics. A durability tester with loading rigs for inducing the above cyclic stresses was used to investigate failure mechanisms in the rubber hose assembly. Failure examination was performed at every 100 thousands cycles of bending and torsion. Hose samples were sectioned with a diamond-wheel cutter and then polished. The polished surface was observed by optical microscope and scanning electron microscope (SEM). Some interfacial delamination with a length of about 1mm along the interface between EPDM rubber and PVA fabrics was shown at the test cycles of 400,000. The delamination induced some cracking into the outer rubber skin layer to leading the final rupture of the hose.

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells (이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰)

  • Kim, Hongrae;Jeong, Sungjin;Cho, Jaewoong;Kim, Sungheon;Han, Seungyong;Dhungel, Suresh Kumar;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

A Study on the Dielectric Characteristics and Microstructure of $Si_3N_4$ Metal-Insulator-Metal Capacitors ($Si_3N_4$를 이용한 금속-유전체-금속 구조 커패시터의 유전 특성 및 미세구조 연구)

  • 서동우;이승윤;강진영
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2000
  • High quality $Si_3N_4$ metal-insulator-metal (MIM) capacitors were realized by plasma enhanced chemical vapor deposition (PECVD). Titanium nitride (TiN) adapted as a diffusion barrier reduced the interfacial reaction between $Si_3N_4$ dielectric layer and aluminum metal electrode showing neither hillock nor observable precipitate along the interface. The capacitance and the current-voltage characteristics of the MIM capacitors showed that the minimum thickness of $Si_3N_4$ layer should be limited to 500 $\AA$ under the present process, below which most of the capacitors were electrically shorted resulting in the devastation of on-wafer yield. According to the transmission electron microscopy (TEM) on the cross-sectional microstructure of the capacitors, the dielectric breakdown was caused by slit-like voids formed at the interface between TiN and $Si_3N_4$ layers when the thickness of $Si_3N_4$ layer was less than 500 $\AA$. Based on the calculation of thermally-induced residual stress, the formation of voids was understood from the mechanistic point of view.

  • PDF

Interfacial Reactions of Sn Solder with Variations of Under-Bump-Metallurgy and Reflow Time (Under Bump Metallurgy의 종류와 리플로우 시간에 따른 Sn 솔더 계면반응)

  • Park, Sun-Hee;Oh, Tae-Sung;Englemann, G.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Thickness of intermetallic compounds and consumption rates of under bump metallurgies (UBMs) were investigated in wafer-level solder bumping with variations of UBM materials and reflow times. In the case of Cu UBM, $0.6\;{\mu}m-thick$ intermetallic compound layer was formed before reflow of Sn solder, and the average thickness of the intermetallic compound layer increased to $4\;{\mu}m$ by reflowing at $250^{\circ}C$ for 450 sec. On the contrary, the intermetallic layer had a thickness of $0.2\;{\mu}m$ on Ni UBM before reflow and it grew to $1.7\;{\mu}m$ thickness with reflowing for 450 sec. While the consumption rates of Cu UBM were 100nm/sec fur 15-sec reflow and 4.50-sec for 450-sec reflow, those of Ni UBM decreased to 28.7 nm/sec for 15-sec reflow and 1.82 nm/sec for 450-sec reflow.

  • PDF

Phase diagrams adn stable structures of stranski-krastanov structure mode for III-V ternary quantum dots

  • Nakajima, Kazuo;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 1999
  • The strain, surface and interfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe(FM) mode, the Stanski-Krastanov(SK) mode and the Volmer-Weber(VW) mode. The free energy for each mode was estimated as functions of thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the INPSb/InP and GaPSb/GaP system which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which two-dimensional(2D) layers precede the three-dimensional(3D) nucleation in the SK mode at x=1.0 depends on the lattice misfit.

  • PDF

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.