• 제목/요약/키워드: Interfacial Bonding Strength

검색결과 174건 처리시간 0.03초

Ti_{50}-Ni_{50} 형상기억합금 복합체의 계면 접학 전단강도 향상에 관한 연구 (A Study on the Improvement of Interfacial Bonding Shear Strength of Ti50-Ni50 Shape Memory Alloy Composite)

  • 이효재;황재석
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2461-2468
    • /
    • 2000
  • In this paper, single fiber pull-out test is used to measure the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite with temperature. Fiber and matrix of $Ti_{50}-Ni_{50}$ shape memory alloy composite are respectively $Ti_{50}-Ni_{50}$ shape memory alloy and epoxy resin. To strengthen the interfacial bonding shear stress, various surface treatments are used. They are the hand-sanded surface treatment, the acid etched surface treatment and the silane coupled surface treatment etc.. The interfacial bonding shear strength of surface treated shape memory alloy fiber is greater than that of surface untreated shape memory alloy fiber by from 10% to 16%. It is assured that the hand-sanded surface treatment and the acid etched surface treatment are the best way to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory composite. The best treatment condition of surface is 10% HNO$_3$ solution in the etching method to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite.

다구찌 방법에 의한 유리-실리콘 양극접합 계면의 파괴인성치 측정 및 양극접합공정 조건에 따른 접합강도 분석 (Measurement of Glass-Silicon Interfacial fracture Toughness and Experimental Evaluation of Anodic Bonding Process based on the Taguchi Method)

  • 강태구;조영호
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1187-1193
    • /
    • 2002
  • Anodic bonding process has been quantitatively evaluated based on the Taguchi analysis of the interfacial fracture toughness, measured at the interface of anodically bonded silicon-glass bimorphs. A new test specimen with a pre-inserted blade has been devised for interfacial fracture toughness measurement. A set of 81 different anodic bonding conditions has been generated based on the three different conditions for four different process parameters of bonding load, bonding temperature, anodic voltage and voltage supply time. Taguchi method has been used to reduce the number of experiments required for the bonding strength evaluation, thus obtaining nine independent cases out of the 81 possible combinations. The interfacial fracture toughness has been measured for the nine cases in the range of 0.03∼6.12 J/㎡. Among the four process parameters, the bonding temperature causes the most dominant influence to the bonding strength with the influence factor of 67.7%. The influence factors of other process parameters, such as anodic voltage and voltage supply time, bonding load, are evaluated as 18%, 12% and 2.3%, respectively. The maximum bonding strength of 7.23 J/㎡ has been achieved at the bonding temperature of 460$\^{C}$ with the bonding load of 45gf/㎠, the applied voltage of 600v and the voltage supply time of 25minites.

다양한 사이징제가 반응중합에 의해 제조된 나일론 6/탄소섬유 복합체의 물성에 미치는 영향 (Effect of Various Sizing Agents on the Properties of Nylon6/Carbon Fiber Composites Prepared by Reactive Process)

  • 박하늘;이학성;허몽영
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.299-303
    • /
    • 2018
  • 탄소섬유 강화 PA6 복합재료의 탄소섬유-메트릭스간 계면결합력과 반응중합도 향상을 위해서 기존 탄소섬유의 에폭시 사이징제를 디사이징처리하여 에폭시를 제거한 후 우레탄계, 나일론계, 페녹시계 사이징제로 재처리해주었으며, 리사이징처리된탄소섬유의표면을관찰하였다. 리사이징처리된탄소섬유의계면결합력은 IFSS(Interfacial shear strength)를 통해서 확인하였으며, 계면 결합 강도 측정 후 파단면은 주사전자현미경을 통해서 관찰하였다. 나일론계와 페녹시계 사이징제로 처리된 탄소섬유가 우레탄계 사이징에 비해 계면 결합력이 상승한 것을 확인하였다. 우레탄계 리사이징 처리된 탄소섬유는 기존 에폭시 사이징 탄소섬유보다 계면 결합력이 감소한 것으로 확인되었다. 이 결과는 기존 탄소섬유의 저활성과 평활성을 제거하여 탄소섬유와 나일론6 사이의 계면 결합력이 향상된 것으로 판단된다.

열처리 방법에 따른 SOI 기판의 스트레스변화 (Stress Evolution with Annealing Methods in SOI Wafer Pairs)

  • 서태윤;이상현;송오성
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.820-824
    • /
    • 2002
  • It is of importance to know that the bonding strength and interfacial stress of SOI wafer pairs to meet with mechanical and thermal stresses during process. We fabricated Si/2000$\AA$-SiO$_2$ ∥ 2000$\AA$-SiO$_2$/Si SOI wafer pairs with electric furnace annealing, rapid thermal annealing (RTA), and fast linear annealing (FLA), respectively, by varying the annealing temperatures at a given annealing process. Bonding strength and interfacial stress were measured by a razor blade crack opening method and a laser curvature characterization method, respectively. All the annealing process induced the tensile thermal stresses. Electrical furnace annealing achieved the maximum bonding strength at $1000^{\circ}C$-2 hr anneal, while it produced constant thermal tensile stress by $1000^{\circ}C$. RTA showed very small bonding strength due to premating failure during annealing. FLA showed enough bonding strength at $500^{\circ}C$, however large thermal tensile stress were induced. We confirmed that premated wafer pairs should have appropriate compressive interfacial stress to compensate the thermal tensile stress during a given annealing process.

블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구 (Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process)

  • 김태호;이광석;김지훈;문영훈;이영선;윤은유
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.267-275
    • /
    • 2018
  • The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.

인듐, 주석, 동 첨가에 따른 도재소부용 금합금의 기계적 특성 변화 (Mechanical properties of porcelain fused gold alloy containing indium, tin and copper)

  • 남상용;곽동주;이덕수
    • 대한치과기공학회지
    • /
    • 제24권1호
    • /
    • pp.65-71
    • /
    • 2002
  • This study was performed to observe the microhardness change of the surface and the bonding strength between the porcelain and alloy specimens in order to investigate the effects of appended indium, tin and copper on interfacial properties of Au-Pd-Ag alloys. The hardness of castings was measured with a micro-Vicker's hardness tester. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The microhardness of Au-Pd-Ag alloy was increased by adding indium and tin, but not increased by adding copper. The shear bonding strength of Au-Pd-Ag-Sn alloy and Au-Pd-Ag-Cu alloy showed 87MPa, 57MPa. The higher concentration of adding elements showed the higher shear bonding strength.

  • PDF

도재소부용 금합금에서 인듐, 주석 첨가가 금속-도재계면 특성에 미치는 영향 (Effects of Indium and Tin on Interfacial Property of Porcelain Fused to Low Gold Alloys)

  • 남상용;곽동주;정석민
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.31-43
    • /
    • 2001
  • This study was performed to observe the micro-structure change of surface, behavior of oxide change of element, the component transformation of the alloy and the bonding strength between the porcelain interface in order to investigate effects of indium, tin on interfacial properties of porcelain fused to low gold alloy. Hardness of castings was measured with a micro-Vicker's hardness tester. The compositional change of the surface of heat-treated specimen was analyzed with an EDS and an EPMA. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The results were as follows: 1) The hardness value of alloy increased as increasing amount of indium addition. 2) The formation of oxidation increased as increasing indium and tin contents after heat treatment. 3) Diffusion of indium and tin elements increased as increasing indium and tin contents in metal-porcelain surface after porcelain fused to metal firing. 4) The most interfacial shear bonding strength was increased as increasing a composition of adding elements, and a heat-treatment time, and an oxygen partial pressure. From the results of this study it was found that the addition of alloying elements such as indium and tin increase hardness of as-cast alloy, produce surface oxide layer of adding elements by heat-treatment which may improve interfacial bonding strength between alloy and porcelain.

  • PDF

Nb/MoSi2 접합재료의 계면 수정 및 특성 (Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

$ZrO_2/NiTi$ 접합부 반응조직에 따른 꺽임강도 및 파괴거동 변화 (The Variation of Fracture Strength and Modes in $ZrO_2/NiTi$ Bond by Changing Reaction Layer)

  • 김영정
    • 한국세라믹학회지
    • /
    • 제31권10호
    • /
    • pp.1197-1201
    • /
    • 1994
  • The fracture strength and fracture modes were studied in 3Y-TZP/NiNi bonding which change their interfacial structure with bonding condition. Average 4-point bending strength of 200 MPa to 400 MPa were achieved. The formation of Ti-oxide phase at the interface critically influenced the bonding strength and fracture mode. The fracture surface of Ti-oxide free interface contained multiphase in some case including ZrO2. From the result it was confirmed that in order to maximize the bonding strength crack deflection from interface to ceramic was required.

  • PDF