• Title/Summary/Keyword: Interface stiffness

Search Result 265, Processing Time 0.03 seconds

Flexural Bchavior of RC Beam according to Thickness Repaired and Rehabilitated with VES-LMC (VES-LMC의 보수·보강 두께에 따른 RC보의 휨거동 특성)

  • Kim, Seong-Kwon;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.101-110
    • /
    • 2006
  • The purpose of this study was to investigate the flexural, interfacial behavior, crack propagation, nonlinear behavior, effect repaired and rehabilitated with VES-LMC using RC beam with 4-point-loading test. The results were following: The test result showed that repair and rehabilitation effect increased as its depth increased, which was verified by the increase of flexural stiffness. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 8cm and 12cm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or rehabilitated beams had a little relative displacement. This means that two materials behave comparatively acting together. This suggested that interface treatment were one of the most important jobs in composite beams.

  • PDF

Structural Performance of Strengthened Reinforced Concrete Slabs with Simple Supports (보강된 단순지지 철근 콘크리트 슬래브의 구조 성능)

  • Shin, Young-Soo;Lee, Cha-Don;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 1997
  • The paper presents the results of experimental studies on two strengthening methods for reinforced concrete (RC) slabs. Bending tests on RC slabs have been carried out to investigate the influence of the increased thickness and externally bonded carbon fiber sheets. The interfaces of new and old concrete of increased thickness specimens have been chipped and treated with bonding agent. The conclusions have been reached as followings. (1) The behavior of specimens with chipped interface is good enough to calculate flexural strength of RC slabs for increased depth. (2) The flexural stiffness of increased depth specimen is severely increased and the deformation of RC slabs is controled. (3) The specimens with externally bonded carbon fiber sheets can be assumed to behave monolithically.

  • PDF

Numerical Formulation of Thermo-Hydro-Mechanical Interface Element (열-수리-역학 거동 해석을 위한 경계면 요소의 수식화)

  • Shin, Hosung;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.45-52
    • /
    • 2022
  • Because discontinuity in the rock mass and contact of soil-structure interaction exhibits coupled thermal-hydromechanical (THM) behavior, it is necessary to develop an interface element based on the full governing equations. In this study, we derive force equilibrium, fluid continuity, and energy equilibrium equations for the interface element. Additionally, we present a stiffness matrix of the elastoplastic mechanical model for the interface element. The developed interface element uses six nodes for displacement and four nodes for water pressure and temperature in a two-dimensional analysis. The fully coupled THM analysis for fluid injection into a fault can model the complicated evolution of injection pressure due to decreasing effective stress in the fault and thermal contraction of the surrounding rock mass. However, the result of hydromechanical analysis ignoring thermal phenomena overestimates hydromechanical variables.

Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length

  • Cojocaru, Eugenia C.;Irschik, Hans
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.343-363
    • /
    • 2010
  • The present paper is concerned with vibrations of an elastic bridge loaded by a moving elastic beam of a finite length, which is an extension of the authors' previous study where the second beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic stiffness and the mass of the train are taken into account. The differential equations are developed according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is developed for the flexural vibrations, bending moments and shear forces in the bridge by means of symbolic computation. When the train travels across the bridge, concentrated forces and moments are found to take place at the front and back side of the train.

A Study of Technical Adapting on Injection Molding for Magnesium Alloy (마그네슘합금 사출성형의 기술적용에 관한 연구)

  • 강태호;김인관;최준영;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.833-836
    • /
    • 1997
  • Magnesium alloys are one of light weight material. Strength and stiffness of Magnesium alloys are enough to use for commercial product. Demand for strong, lightweight parts several computer and electronics have driven much of Magnesium injection molding's growth so far. And it is eighth most abundant resource on earth. In electronic device, electromagnetic interface and electrostatic discharge can affect performance. Magnesium injection molding is similar to normal plastic injection molding process. But some process condition is different. Especially injection speed and process temperature are so differs from other injection molding system. It just start for make something. But Magnesium injection molding is one of best alternate process for producing metal alloy part.

  • PDF

Analytical Study on Discontinuous Displacement in Reinforced Concrete Column-Footing Joint under Earthquake (지진시 철근콘크리트 기둥-기초 접합부의 불연속 변위에 관한 해석적 연구)

  • 김태훈;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.83-90
    • /
    • 2000
  • This paper presents an analytical prediction of the elastic behavior of discontinuous displacement in reinforced concrete column-footing joint under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The proposed numerical method for hysteretic behavior of discontinuous displacement in reinforced concrete column-footing joint will be verified by comparison with reliable experimental results.

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

Simulation study on dynamic response of precast frames made of recycled aggregate concrete

  • Pham, ThiLoan;Xiao, Jianzhuang;Ding, Tao
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.643-667
    • /
    • 2015
  • 3-dimentional precast recycled aggregate concrete (RAC) finite element models were developed by means of the platform OpenSees to implement sophisticated nonlinear model subjected to seismic loads. Efforts were devoted to the dynamic responses (including dynamic characteristics, acceleration amplifications, displacements, story drifts) and capacity curve. In addition, this study extended the prediction on dynamic response of precast RAC model by parametric study of material properties that represent the replacement percentage of recycled coarse aggregate (RCA). Principles and assumptions that represent characteristics of precast structure and influence of the interface between head of column and cast-in-place (CIP) joint on the stiffness of the joints was put forward and validated by test results. The comparison between simulated and tested results of the precast RAC frame shows a good correlation with most of the relative errors about 25% in general. Therefore, the adopted assumptions and the platform OpenSees are a viable approach to simulate the dynamic response of precast frames made of RAC.

A Statistical Theory of Conformational Properties of Amphiphile Molecules at the Air-Water Interface

  • Young Shang Pak;Hyungsuk Pak
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.170-177
    • /
    • 1991
  • A lattice mean field theory is developed to investigate the conformational properties of monolayer amphiphiles at the air-water interface. By generalizing Dill and Cantor's method and by extending Whittington's recurrence equation, we derive the supermatrix recurrence equation which is applied to calculation of various segment density profiles and order parameter, etc. In deriving the equation, we incorporated the chain stiffness effect and the chain connectivity which are distinguished features of linear chain molecule. Our result shows that, as the surface coverage $\sigma$ increases the chain ordering process with respect to vertical axis of the lattice system becomes dominant.

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.