• Title/Summary/Keyword: Interface power flow margin

Search Result 6, Processing Time 0.024 seconds

Reactive Reserve Based Contingency Constrained Optimal Power Flow for Enhancement of Voltage Stability Margins (전압안정도 여유 향상을 위한 무효예비력 기반 상정사고 제약 최적조류계산)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk;Ajjarapu, Venkataramana
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.19-23
    • /
    • 2003
  • This paper presents a new concept of reactive reserve based contingency constrained optimal power flow (RCCOPF) for voltage stability enhancement. This concept is based on the fact that increase in reactive reserves is effective for enhancement of voltage stability margins of post-contingent states, in this paper, the proposed algorithm is applied to voltage stability margin of interface flow. Interface flow limit, in the open access environment, can be a main drawback. RCCOPF for enhancement of interface flow margin is composed of two modules, modified continuation power flow (MCPF) and optimal power flow (OPF). These modules art recursively perform ed until satisfying the required margin of interface flow in the given voltage stability criteria.

  • PDF

On Control Strategies for BTB Converters for Enhancement of Interface Flow Margins (융통전력 여유 향상을 위한 BTB 컨버터 제어 전략 수립)

  • Ohn, Sung-Min;Song, Hwa-Chang;Jang, Byong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.374-375
    • /
    • 2011
  • This paper presents a method to determine parameters of BTB (back-to-back) converters in terms of the enhancement of interface flow margins. Interface flow margin is by definition a measure of how much active power can be transferred from the external areas to the study area with the fixed load demand, and it is mainly constrained by system voltage stability. BTB converters are controllable equipments with the active power flow through them, and its DC link in fact can divide the AC systems at the location and hence can reduce the fault current level. This paper first cals margin sensitivities at the nose point of F-V curves and formulates an optimization problem to update the BTB parameters to improve the margins. This procedure is repeated performed until the required margin enhancement is achieved.

  • PDF

Reactive Reserve based Contingency Constrained Optimal Power Flow to Enhance Interface Flow Limits in Terms of voltage Stability

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.27-32
    • /
    • 2001
  • This paper presents a concept of reactive reserve based contingency constrained optimal power flow (RCCOPF). RCCOPF for enhancement of interface flow limit is composed of two modules, which are the modified continuation power flow (MCPF) and reactive optimal power flow (ROPF). In RCCOPF, two modules are repeatedly performed to increase interface flow margins of selected contingent states until satisfying the required enhancement of interface flow limit. In numerical simulation, a simple example with New England 39-bus test system is shown.

  • PDF

Reactive Reserve based Contingency Constrained Optimal Power Flow to Enhance Interface Flow Limits in Terms of Voltage Stability

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.11 no.X00
    • /
    • pp.27-32
    • /
    • 2001
  • This paper presents a concept of reactive reserve based contingency constrained optimal power flow (RCCOPF). RCCOPF for enhancement of interface flow limit is composed of two modules, which are the modified continuation power flow (MCPF) and reactive optimal power flow (ROPF). In RCCOPF, two modules are repeatedly performed to increase interface flow margins of selected contingent states until satisfying the required enhancement of interface flow limit. In numerical simulation, a simple example with New England 39-bus test system is shown.

Enhancement of Interface Flow Limit using Static Synchronous Series Compensators

  • Kim Seul-Ki;Song Hwa-Chang;Lee Byoung-Jun;Kwon Sae-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.313-319
    • /
    • 2006
  • This paper addresses improving the voltage stability limit of interface flow between two different regions in an electric power system using the Static Synchronous Series Compensator (SSSC). The paper presents a power flow analysis model of a SSSC, which is obtained from the injection model of a series voltage source inverter by adding the condition that the SSSC injection voltage is in quadrature with the current of the SSSC-installed transmission line. This model is implemented into the modified continuation power flow (MCPF) to investigate the effect of SSSCs on the interface flow. A methodology for determining the interface flow margin is simply briefed. As a case study, a 771-bus actual system is used to verify that SSSCs enhance the voltage stability limit of interface flow.

A Study on Multi Level Load Shedding Control Scheme Strategy for Stabilization of the Korean Power System (국내 전력계통 안정화를 위한 다단계 부하차단 제어전략 수립에 관한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Korean Power System are operating a load shedding system to prevent voltage instability phenomenon caused by severe line contingencies. In order to apply the load shedding scheme should be selected a location, amount, delay time. Current load shedding system is load shedding amount that has been calculated in the steady-state analysis to load shed the total amount in first level, load shedding amount calculated in advance, it is possible to perform an unnecessary load shedding. In this paper, set a multi-level load shedding control strategy step-by-step selection of load shedding amount for the prevention of excessive load shedding. In addition, through a voltage resilience analysis of the power system by applying motor load ratio and sensitivity parameter to selection the multi level load shedding ratio and delay time. For this reason, to take advantage of the limit data of interchange power, by utilizing interface power flow data to set a multi-level load shedding control strategy for the stabilization of the Korean Power System.