• 제목/요약/키워드: Interface failure mode

검색결과 150건 처리시간 0.023초

Investigation on the failure mechanism of steel-concrete steel composite beam

  • Zou, Guang P.;Xia, Pei X.;Shen, Xin H.;Wang, Peng
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1183-1191
    • /
    • 2016
  • The internal crack propagation, the failure mode and ultimate load bearing capacity of the steel-concrete-steel composite beam under the four-point-bend loading is investigated by the numerical simulation. The results of load - displacement curve and failure mode are in good agreement with experiment. In order to study the failure mechanism, the composite beam has been modeled, which part interface interaction between steel and concrete is considered. The results indicate that there are two failure modes: (a) When the strength of the interface is lower than that of the concrete, failure happens at the interface of steel and concrete; (b) When the strength of the interface is higher than that of the concrete, the failure modes is cohesion failure, i.e., and concrete are stripped because of the shear cracks at concrete edge.

혼합 하중하에서의 고분자/거친금속 계면의 파손경로 (Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading)

  • 이호영;김성룡
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.322-327
    • /
    • 2004
  • Copper-based leadframe sheets were oxidized in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched Brazil-nut (SBN) specimens. The SBN specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under mixed-mode (mode I + mode II) loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The results revealed that the failure paths were strongly dependent on the oxide type. In case of brown oxide, hackle-type failure was observed and failure path lay near the EMC/CuO interface with a little inclining to CuO at all case. On the other hand, in case of black oxide, quite different failure path was observed with respect to the distance from the tip of pre-crack and phase angle. Different failures occurred with oxide type is presumed to be due to the difference in microstructure of the oxides.

강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질 (Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters)

  • 이타;주영태;이용학
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.781-788
    • /
    • 2009
  • 강-콘크리트 계면의 성질을 대표하는 부착강도, 부착 및 비부착 마찰계수, 부착 및 비부착 마찰계수의 연화영역에서 잔류량의 크기, 모드 I 파괴에너지, 부착 및 비부착 모드 II 파괴에너지, 파괴포락선의 형상계수를 포함한 총 9개 계면상수의 값을 계면거동실험결과와 파괴포락선의 기하학적 형상 및 구성모델을 이용하는 민감도 해석을 통해 결정하였다. 계면의 거동이 계면의 부착상태뿐만 아니라 계면법선방향 응력의 방향과 크기에 따라 매우 민감하게 작용하므로 계면상수 값의 결정에서는 이러한 구속압의 크기와 부착 및 비부착 계면조건을 고려하였다. 강재판 사이에 콘크리트가 타설된 강-콘크리트 계면실험체의 거동해석을 위한 계면유한요소해석을 결정된 계면상수를 적용하여 수행하였으며 실험결과와의 비교를 통해 상수값의 적정성을 검토하였다.

기계적 프레스 접합법을 이용한 A1-5052 인장-전단 시험편의 강도 평가에 관한 실험적 연구 (An Experimental Study on the Strength Evaluation of A1-5052 Tensile-Shear Specimens Using a Mechanical Press Joining Method)

  • 임두환;이병우;류현호;김호경
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.58-64
    • /
    • 2003
  • A mechanical press joining was investigated in ender for joining A1-5052 sheets for automobile body weight reduction. Static tensile and fatigue tests were conducted using tensile-shear specimens for evaluation of fatigue strength of the joint. During Tox joining process for A1-5052 plates, using the current sheet thickness and punch diameter, the optimal applied punching force was found to be 32 kN under the current joining condition. For the static tensile-shear experiment results, the fracture mode is classified into interface fracture mode, in which the neck area fractured due to influence of neck thickness, and pull-out fracture mode due to influence of plastic deformation of the joining area. And, during fatigue tests for the A1-5052 tensile shear specimens, interface failure mode occurred in the region of low cycle. The fatigue endurance limit approached to 6 percents of the maximum applied load, considering fatigue lifetime of $2.5\times10^6$ cycles.

탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리해석 (An Analysis of Interface Debonding Failure on Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet)

  • 심종성;배인환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.839-844
    • /
    • 1998
  • The purpose of this study is to analyze the interface debonding failure on RC beams strengthened with carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated using both linear elastic fracture mechanics (LEFM) approach and the finite element method. This study includes the investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses.

  • PDF

혼합하중 조건하에서 갈색산화물이 입혀진 구리계 리드프레임/EMC 계면의 파손경로 (Failure Path of the Brown-oxide-coated Copper-based Leadframe/EMC Interface under Mixed-Mode Loading)

  • 이호영
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.491-499
    • /
    • 2003
  • Copper-based leadframe sheets were oxidized in a hot alkaline solution to form brown-oxide layer on the surface and molded with epoxy molding compound (EMC). The brown-oxide-coated leadframe/EMC joints were machined to form sandwiched double-cantilever beam (SDCB) specimens and sandwiched Brazil-nut (SBN) specimens for the purpose of measuring the fracture toughness of leadframe/EMC interfaces. The SDCB and the SBN specimens were designed to measure the fracture toughness of the leadframe/EMC interfaces under nearly mode-I loading and mixed-mode (mode I + mode II) loading conditions, respectively. Fracture surfaces were analyzed by various equipment such as glancing-angle XRD, SEM, AES, EDS and AFM to elucidate failure path. Results showed that failure occurred irregularly in the SDCB specimens, and oxidation time of 2 minutes divided the types of irregular failures into two classes. The failure in the SBN specimens was quite different from that in the SDCB specimens. The failure path in the SBN specimens was not dependent on the phase angle as well as the distance from tips of pre-cracks.

철도노반 긴급복구를 위한 토목섬유 컨테이너의 파괴형태 분석 (Analysis of Failure Mode of Geotextile Container for Urgent Rehabilitation of Railroad Bed)

  • 신은철;이명호;이준철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.608-613
    • /
    • 2002
  • This study was under taken as an analysis of failure mode in a railroad bed reconstructed with miniaturized Geotextile Container after being destroyed by heavy rain. It assesses the practical use of the bag shaped Geotextile Container method in the rehabilitation of destroyed roadbeds. The failure mode was assessed using the laboratory model tests to determine the following criteria: Strain of Geotextile Container, Vertical & Horizontal displacements of Geotextile Container layer, and the transmitting load effects due to the applied load. The Geotextile Container layer was failed as a Block Failure type, although there was some variation in the results between the saturated and unsaturated conditions. The main failure was caused by the reduction of the interface friction between Geotextile Containers. The result of this mobilizes the significant horizontal displacement and the ultimate failure of the Geotextile Container layer. The strain on the wet Geotextile Container was occurred about two times greater than that of dry condition.

  • PDF

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

이종 접합체의 원공에서 파생하는 균열에 대한 혼합모드 파괴기준의 설정 (Establishment of Fracture Criteria for Mixed Mode in Bonded Dissimilar Materials with an Crack Emanating from an Edge Semicircular Hole)

  • 정남용;송춘호
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.907-915
    • /
    • 2001
  • Application of bonded dissimilar materials in many industries are increasing. When these materials are to be used in structures, it needs to evaluate the failure strength applying fracture mechanics. Al/Epoxy bonded dissimilar materials with an interface crack and an interface crack emanating from an edge semicircular hole were prepared, experiment of fracture toughness were carried out. Stress intensity factors of interface cracks in bonded dissimilar materials were computed with boundary element method(BEM) and the fracture criteria of mixed mode crack were analyzed. From the results, the fracture criteria and the method of strength evaluation by the fracture toughness in Al/Epoxy bonded dissimilar materials were proposed.

변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향 (Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength)

  • 류현희;신영수;정혜교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF