• Title/Summary/Keyword: Interface energy

Search Result 1,776, Processing Time 0.027 seconds

A study on the improvement method of the stress field analysis in a domain composed of dissimilar materials (이종재료로 구성된 영역의 응력장 해석 개선방안 연구)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1844-1851
    • /
    • 1997
  • Displacement fields and interface stresses are obtained by modifying the potential energy functional with a penalty function which enforces the continuity of stresses at the interface of two-materials. Based on the displacement field and the interface stresses, a new methodology to generate a continuous stress field over the entire domain including the interface of the dissimilar materials has been proposed by combining the L$^{2}$ projection method of stress-smoothing and the Loubignac's iterative method of improving the displacement field. Stress analysis was carried out on two examples which are made of highly dissimilar materials. As a result of the analysis, it is found that the proposed method provides improved continuity of the stress field over the entire domain as well as predicting accurate nodal stresses at the interface. In contrast, the conventional displacement-based finite element method provides significant stress discontinuties at the interfaces. In addition, it was found that the total strain energy evaluated from the improved continuous stress field converge to the exact value as increasing the number of iterations in the proposed method.

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

Study on the propagation mechanism of stress wave in underground mining

  • Liu, Fei;Li, Lianghui
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • For the influence of the propagation law of stress wave at the coal-rock interface during the pre-blasting of the top coal in top coal mining, the ANSYS-LS/DYNA fluid-solid coupling algorithm was used to numerical calculation and the life-death element method was used to simulate the propagation of explosion cracks. The equation of the crushing zone and the fracturing zone were derived. The results were calculated and showed that the crushing radius is 14.6 cm and the fracturing radius is 35.8 cm. With the increase of the angles between the borehole and the coal-rock interface, the vibration velocity of the coal particles and the rock particles at the interface decreases gradually, and the transmission coefficient of the stress wave from the coal mass into the rock mass decreases gradually. When the angle between the borehole and the coal-rock interface is 0°, the overall crushing degree is about 11% and up to the largest. With the increase of the distance from the charge to the coal-rock interface, the stress wave transmission coefficient and the crushing degree of the coal-rock are gradually decreased. At the distance of 50 cm, the crushing degree of the coal-rock reached the maximum of approximately 12.3%.

Overview of Interface Engineering for Organic Solar Cells (유기태양전지 계면 기술 동향)

  • Kim, Gi-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.113-117
    • /
    • 2021
  • Among the next-generation solar cells, organic solar cells using organic materials are a key energy production device for the future energy generation devices, and have recently been receiving a lot of attention with rapid growth. To improve the efficiency of organic solar cells, interfacial engineering technology has been widely applied. In particular, it is widely used to improve device efficiency through energy level control by using interface engineering on the anode and cathode, which are positive electrodes, and to ultimately utilize interface engineering for tandem organic solar cells to derive excellent electrical and optical performance to produce high-performance devices. In this article, we will summarize and introduce recent research trends on interfacial engineering used in organic solar cells, and discuss the method of manufacturing high-performance organic solar cells.

Study of Bidirectional DC-DC Converter Interfacing Energy Storage for Vehicle Power Management Using Real Time Digital Simulator (RTDS)

  • Deng, Yuhang;Foo, Simon Y.;Li, Hui
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.479-489
    • /
    • 2011
  • The bidirectional dc-dc converter, being the interface between Energy Storage Element (ESE) and DC bus, is an essential component of the power management system for vehicle applications including electric vehicle (EV), hybrid electric vehicle (HEV), and fuel cell vehicle (FCV). In this paper, a novel multiphase bidirectional dc-dc converter interfacing with battery to supply and absorb the electric energy in the FCV system was studied with the help of real time digital simulator (RTDS). The mathematical models of fuel cell, battery and dc-dc converter were derived. A power management strategy was developed and first simulated in RTDS. A Power Hardware-In-the-Loop (PHIL) simulation using RTDS is then presented. The main challenge of this PHIL is the requirement for a highly dynamic bidirectional Simulation-Stimulation (Sim-Stim) interface. This paper describes three different interface algorithms. The closed-loop stability of the resulting PHIL system is analyzed in terms of time delay and sampling rate. A prototype bidirectional Sim-Stim interface is designed to implement the PHIL simulation.

The Evaluation of the Kinked Interface Crack Behavior in Dissimilar Materials by CED (CED에 의한 계면굴절균열의 진전거동평가)

  • Kwon, O.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.414-422
    • /
    • 1997
  • The characteristics on the extension of the CED(Crack Energy Density) concept to the interface kinked crack problems in a dissimilar are examined. Each mode contributions of CED are found by symmetric and antisymmetric conponents and domain independent integrals. Finite element calculation is carried out to simulate the interface kinked crack growth on a bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an interface kinked crack.

Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature (CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성)

  • Cho Young Jea;Kim Young Nam;Yang In Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

Temperature Effect on the Interface Trap in Silicon Nanowire Pseudo-MOSFETs

  • Nam, In-Cheol;Kim, Dae-Won;Heo, Geun;Najam, Syed Faraz;Hwang, Jong-Seung;Hwang, Seong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.487-487
    • /
    • 2013
  • According to shrinkage of transistor, interface traps have been recognized as a major factor which limits the process development in manufacturing industry. The traps occur through spontaneous generation process, and spread into the forbidden band. There is a large change of current though a few traps are existed at the Si-SiO2 interface. Moreover, the increased temperature largely affects to the leakage current due to the interface trap. For this reason, we made an effort to find out the relationship between temperature and interface trap. The subthreshold swing (SS) was investigated to confirm the correlation. The simulated results show that the sphere of influence of trap is enlarged according to increase in temperature. To investigate the relationship between thermal energy and surface potential, we extracted the average surface potential and thermal energy (kT) according to the temperature. Despite an error rate of 6.5%, change rates of both thermal energy and average surface potential resemble each other in many ways. This allows that SS is affected by the trap within the range of the thermal energy from the surface energy.

  • PDF

Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method

  • Dong, Chunhui;Guo, Kailun;Cai, Qinghang;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1172-1179
    • /
    • 2020
  • As a Lagrangian particle method, Moving Particle Semi-implicit (MPS) method has great capability to capture interface/surface. In recent years, the multiphase flow simulation using MPS method has become one of the important directions of its developments. In this study, some key methods for multiphase flow have been introduced. The interface tension model in multiphase flow is modified to maintain the smooth of the interface and suitable for the three-phase flow. The mass transfer at immiscible liquid interface entrained by single bubble which could occur in Molten Core-Concrete Interaction (MCCI) has been investigated using this particle method. With the increase of bubble size, the height of entrainment column also increases, but the time of film rupture is slightly different. With the increase of density ratio between the two liquids, the height of entrained column decreases significantly due to the decreasing buoyancy of the denser liquid in the lighter liquid. In addition, the larger the interface tension coefficient is, the more rapidly the entrained denser liquid falls. This study validates that the MPS method has shown great performance for multiphase flow simulation. Besides, the influence of physical parameters on the mass transfer at immiscible interface has also been investigated in this study.

QoS-guaranteed Fast Wakeup and Connection Mechanism in Multi-Interface Communication Systems

  • Kim, Moon;Park, Ki-Sik;Kim, Wan-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.682-686
    • /
    • 2010
  • In this paper, we propose the fast wakeup and connection mechanisms for various energy saving schemes in order to improve QoS. First, we offer the interconnection of heterogeneous access networks via the Media Independent Information Server/Service (MIIS). Then, we propose the fast wakeup and connection mechanism for multi-interface communication systems. The proposed novel mechanism focuses on the fast provision of incoming service destined to the interface currently in energy saving mode by using MIIS-assisted interconnection. We further evaluate the performance of proposed mechanism through the numerical and experimental analysis.