• Title/Summary/Keyword: Interface circuit

Search Result 605, Processing Time 0.025 seconds

Wireless Audio-visual Interface over UWB

  • Cui, Wei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1491-1494
    • /
    • 2008
  • Typically internal mobile LCD display modules are connected to the mobile product baseband PCB with flexible printed circuit board equipped with board-to-board connector. This solution has a drawback of limiting the product concept work to certain solutions that are based on connector size, location, flexible PCB length, bending, etc. in the display module. Also flexible printed circuit board based solutions are not completely optimized from reliability point of view, causing flex circuit board breakings. For the external displays in the PC or Home entertainment market, the cable solution is too expensive and resource demanding. The wireless solution has obvious advantages over reliability, low cost and flexibility. This paper describes a wireless audio-visual interface solution.

  • PDF

Design of 1/4-rate Clock and Date Recovery Circuit for High-speed Serial Display Interface (고속 직렬 디스플레이 인터페이스를 위한 1/4-rate 클록 데이터 복원회로 설계)

  • Jung, Ki-Sang;Kim, Kang-Jik;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.455-458
    • /
    • 2011
  • 4:10 deserializer is proposed to recover 1:10 serial data using 1/4-rate clock. And then, 1/4-rate CDR(Clock and Data Recovery) circuit was designed for SERDES of high-speed serial display interface. The reduction of clock frequency using 1/4-rate clocking helps relax the speed limitation when higher data transfer is demanded. This circuit is composed of 1/4-rate sampler, PEL(Phase Error Logic), Majority Voting, Digital Filter, DPC(Digital to Phase Converter) and 4:10 deserializer. The designed CDR has been designed in a standard $0.18{\mu}m$ 1P6M CMOS technology and the recovered data jitter is 14ps in simulation.

The Circuit Design and Implementation of HomePNAl.0 Transceiver (HomePNAl.0 Transceiver의 회로 설계 및 구현)

  • Koo, Ki-Jong;Ryu, Khwang-Hyun;Hong, In-Seong;Kim, Bo-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.131-134
    • /
    • 2000
  • This paper presents the circuit design and implementation of a HomePNA (Home Phoneline Network Alliance) 1M8 PHY transceiver for specification ver1.1. This paper describes a physical medium interface, an Ethernet MAC controller unit interface, and a management interface of the HomePNA transceiver. The designed HomePNA transceiver can support any specifications having more than 32Mbits/sec(maximum in HomePNA ver2.0) transmission rate by changing physical medium interface, because Ethernet MAC controller unit interface has been designed by using MII.

  • PDF

Design of Digital Calibration Circuit of Silicon Pressure Sensors (실리콘 압력 센서의 디지털 보정 회로의 설계)

  • Kim, Kyu-Chull
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.245-252
    • /
    • 2003
  • We designed a silicon pressure sensor interface circuit with digital calibration capability. The interface circuit is composed of an analog section and a digital section. The analog section amplifies the weak signal from the sensor and the digital section handles the calibration function and communication function between the chip and outside microcontroller that controls the calibration. The digital section is composed of I2C serial interface, memory, trimming register and controller. The I2C serial interface is optimized to suit the need of on-chip silicon microsensor in terms of number of IO pins and silicon area. The major part of the design is to build a controller circuit that implements the optimized I2C protocol. The designed chip was fabricated through IDEC's MPW. We also made a test board and the test result showed that the chip performs the digital calibration function very well as expected.

  • PDF

A CMOS Switched-Capacitor Interface Circuit for MEMS Capacitive Sensors (MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로)

  • Ju, Min-sik;Jeong, Baek-ryong;Choi, Se-young;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.569-572
    • /
    • 2014
  • This paper presents a CMOS switched-capacitor interface circuit for MEMS capacitive sensors. It consist of a capacitance to voltage converter(CVC), a second-order ${\Sigma}{\Delta}$ modulator, and a comparator. A bias circuit is also designed to supply constant bias voltages and currents. This circuit employes the correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques to reduce low-frequency noise and offset. The designed CVC has a sensitivity of 20.53mV/fF and linearity errors less than 0.036%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 5% as the input voltage amplitude increases by 100mV. The designed interface circuit shows linearity errors less than 0.13%, and the current consumption is 0.73mA. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V. The size of the designed chip including PADs is $1117um{\times}983um$.

  • PDF

A Hardware-Software Interface Design in the Codesign Environment (혼합 설계 환경에서의 하드웨어-소프트웨어 인터페이스 설계)

  • 장준영;배영환
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.120-123
    • /
    • 2000
  • In this paper, A target architecture and interface synthesizer are proposed for processor-embedded codesign. The target architecture has the form of ARM processor based on AMBA. The interface synthesizer automatically generates an interface circuit for the communication between HW and SW. A memory map is used as the communication channel and an interrupt-based interface is applied for synchronized communication between HW and SW modules. In order to verify the function and performance of proposed target architecture and the interface synthesizer, practical test example is applied. Experimental results show the proposed interface synthesizer functioned correctly in the HW/SW codesign environment.

  • PDF

Design of a High-Speed LVDS I/O Interface Using Telescopic Amplifier (Telescopic 증폭기를 이용한 고속 LVDS I/O 인터페이스 설계)

  • Yoo, Kwan-Woo;Kim, Jeong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.89-93
    • /
    • 2007
  • This paper presents the design and the implementation of input/output (I/O) interface circuits for 2.5 Gbps operation in a 3.3V 0.35um CMOS technology. Due to the differential transmission technique and low voltage swing, LVDS(low-voltage differential signaling) has been widely used for high speed transmission with low power consumption. This interface circuit is fully compatible with the LVDS standard. The LVDS proposed in this paper utilizes a telescopic amplifier. This circuit is operated up to 2.3 Gbps. The circuit has a power consumption of 25. 5mW. This circuit is designed with Samsung $0.35{\mu}m$ CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection

  • Eom, Won-Jin;Kim, Sung-Woo;Park, Kyeonghwan;Bien, Franklin;Kim, Jae Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.793-799
    • /
    • 2016
  • A multi-purpose sensor interface that provides dual-mode operation of fingerprint sensing and physiological signal detection is presented. The dual-mode sensing capability is achieved by utilizing inter-pixel shielding patterns as capacitive amplifier's input electrodes. A prototype readout circuit including a fingerprint panel for feasibility verification was fabricated in a $0.18{\mu}m$ CMOS process. A single-channel readout circuit was implemented and multiplexed to scan two-dimensional fingerprint pixels, where adaptive calibration capability against pixel-capacitance variations was also implemented. Feasibility of the proposed multi-purpose interface was experimentally verified keeping low-power consumption less than 1.9 mW under a 3.3 V supply.

Integrated 3-Channel Flux-Locked-Loop Electronics for the Readout of High-$T_c$ SQUID (고온초전도 SQUID 신호 검출을 위한 3채널용 FLL 회로)

  • 김진목;김인선;유권규;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • We designed and constructed integrated 3-channel flux-locked-loop (FLL) electronic system for the control and readout of high-T$_{c}$ SQUIDs. This system consists of low noise preamplifiers, integrators, interface circuits, and software. FLL operation was carried out with biased signals of 19 KHz modulated current and 150 KHz modulated flux, which are reconstructed as detected signals by preamplifier and demodulator. Computer controlled interface circuits regulate FLL circuit and adjust SQUID parameters to the optimum operating condition. The software regulates interface circuits to make an auto-tuning for the control of SQUIDs, and displays readout data from FLL circuit. 3-channel SQUID electronic system was assembled with 3 FLL-interface circuit boards and a power supply board in the aluminum case of 56 mm ${\times}$ 53 mm${\times}$ 150 mm. Overall noise of the system was around 150 fT/(equation omitted)Hz when measured in the shielded room, 200 fT/(equation omitted)Hz in a weakly shielded room, respectively.y.

  • PDF

Design of high speed-low voltage LVDS driver circuit with the novel ESD protection device (새로운 구조의 ESD 보호소자를 내장한 고속-저전압 LVDS Driver 설계)

  • Lee, Jae-Hyun;Kim, Kui-Dong;Kwon, Jong-Ki;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low power consumption at the same time. Maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, we performed the layout high speed I/O interface circuit with the low triggered ESD protection device in one-chip.

  • PDF