• Title/Summary/Keyword: Interface Testing

Search Result 630, Processing Time 0.03 seconds

MIPv4/MIPv6 Mobility Simulation Model of the Multihomed Node (멀티홈드 노드의 MIPv4/MIPv6 이동성 시뮬레이션 모델)

  • Zhang, Xiaolei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.179-186
    • /
    • 2012
  • Nowadays, the multihomed host equipped with multiple network interfaces has been interested research in next generation wireless network, because the mobile users expect that they can be able to access services not only anywhere, at any time and from any network but also simultaneously. This paper addresses the mobility simulation model of the multihomed node for supporting MIPv4 and MIPv6 function in an interworking of Worldwide Interoperability for Microwave Access (WiMAX) and IEEE 802.11 WLAN. The multihomed node with two air interfaces has been developed based on WiMAX and WLAN workstation node model in simulation software. The main point of the developed model is to support both MIPv4 and MIPv6 function, and provide network selection policy for the multihomed node between WiMAX and WLAN network. Based on the received Router Advertisement along with the interface number, we can manage the access interfaces in ordered list to make handover decision while the multihomed node is moving. In the end of this paper, the simulation scenarios and results are shown for testing MIPv4 and MIPv6 function.

Design and Implementation of Sleep Disorders Improvement System Based on Multi-Sensor (멀티센서 기반 수면장애 개선 시스템 설계 및 구현)

  • Le, Young-Woo;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2653-2660
    • /
    • 2013
  • Representative sleep disorders represent sleep apnea and snoring. Although researches to diagnose sleep disorders as solutions for these problems are going on, the original researches only diagnose and measure sleep disorders but ones to find out the reasons are not activated much. Therefore, to reinforce this, this paper suggests sleep disorder improvement system based on multi-sensor. To design the system proposed in this paper, the entire system's structure was found and data's flow was planned. To ensure that the system works, mobile application and user interface was built based on Android. To test the results on accuracy of sleep disorders improvement system based on ontology using multi sensor built and planned in this paper, a scenario was written. As a result of testing inference results' accuracy changing factor values of sleep disorders following test scenario, proposed sleep disorders improvement system's accuracy was checked.

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

An Effect of Aging and Thermocycling on the Tensile Strength of Restorative Composite Resins (시효와 열순환 처리가 수복용 복합레진의 인장강도에 미치는 영향)

  • Lee, Mi-Jeong;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • The purpose of this study was to evaluate effect of aging and thermocycling on the tensile strength of restorative composite resins. Eight commercially available light-cured restorative composites (Heliomolar: HM, Palfique Estelite: PE, Spectrum: ST, UniFil-F: UF, Z100: ZH, Clearfil AP-X: CA, P60: PS, and Palfique Toughwell: PT) were selected as experimental materials. Rectangular-shaped tensile test specimens were fabricated in a teflon mold giving 5 mm in gauge length and 2 mm in thickness. All samples were stored in distilled water at $37^{\circ}C$ for 100 days. Every 10 days, specimens were thermocycled for 1,000 cycles with 15 seconds of dwelling time in each $5^{\circ}C$ and $55^{\circ}C$ water baths. Tensile testing was carried out at a crosshead speed of 0.5 mm/min and fracture surfaces were observed with a scanning electron microscope. The results obtained were summarized as follows; 1. The strength degradation of thermocycled group was severer than that of the aged group (P<0.01). 2. The tensile strength of the CA and ST groups were significantly higher than that of other groups after thermocycling treatment (P<0.05). 3. Fracture surfaces showed that the composite resin failure developed along the matrix and the filler/resin interface region.

A comparison of the shear bond strength between porcelain repair systems and fractured surface of porcelain-fused-to-metal restorations (도재파절 양상에 따른 수종의 도재 수복용 레진의 결합력에 관한 실험적 연구)

  • Choi, Jeung Won;Han, Dong Hoo;Jeong, Chang Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 1990
  • Although dental porcelain demonstrates lasting esthetic results, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. This study investigated the in vitro shear strength of three porcelain repair systems according to aspects of the porcelain fractures. The purpose of this study was to evaluate the shear bond strength of three porcelain repair systems(All-bond, Clearfil, Scotchprime) according to fractured surface of porcelain - fused - to - metal restorations. For this study specimens were divided into five groups : group 1 represented fracture occurred at body porcelain layer, group 2 represented fracture occurred at opaque porcelain layer, group 3 represented fracture including 1/3 of metal exposure, group 4 represented fracture including 2/3 of metal exposure, and group 5 represented all metal surface was exposed. Specimens were stored in double deionized water(24Hr, $37^{\circ}C$) and thermocycling was performed(24Hr, 1080cycles), and subjected to a shear force parallel to the repair resin and porcelain interface by use of an University Testing Machine. The results of this study were obtained as follows : 1. In group 1 and 2, bond strength was relatively high, and bond strength showing reducing tendency as exposure of metal was increased. 2. In group 1, bond strength was relatively high, and no significant differences in porcelain repair system. 3. In group 2, 3 and 4, All-bond and Clearfil provided significantly higher bond strength than scotchprime. 4. In group 5, bond strength was the lowest among all groups and especially in case if Scotchprime. 5. Cohesive failure was observed in group 1 and 2, adhesive failure was observed in group 5, and cohesive / adhesive failures were observed in group 3 and 4.

  • PDF

An intelligent eddy current signal evaluation system to automate the non-destructive testing of steam generator tubes in nuclear power plant

  • Kang, Soon-Ju;Ryu, Chan-Ho;Choi, In-Seon;Kim, Young-Ill;Kim, kill-Yoo;Hur, Young-Hwan;Choi, Seong-Soo;Choi, Baeng-Jae;Woo, Hee-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.74-78
    • /
    • 1992
  • This paper describes an intelligent system to automatic evaluation of eddy current(EC) signal for Inspection of steam generator(SG) tubes in nuclear power plant. Some features of the intelligent system design in the proposed system are : (1) separation of representation scheme ,or event capturing knowledge in EC signal and for structural inspection knowledge in SG tubes inspection; (2) each representation scheme is implemented in different methods, one is syntactic pattern grammar and the other is rule based production. This intelligent system also includes an data base system and an user interface system to support integration of the hybrid knowledge processing methods. The intelligent system based on the proposed concept is useful in simplifying the knowledge elicitation process of the rule based production system, and in increasing the performance in real time signal inspection application.

  • PDF

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

Effects of the Electroless Ni-P Thickness and Assembly Process on Solder Ball Joint Reliability (무전해 Ni-P 두께와 Assembly Process가 Solder Ball Joint의 신뢰성에 미치는 영향)

  • Lee, Ji-Hye;Huh, Seok-Hwan;Jung, Gi-Ho;Ham, Suk-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The ability of electronic packages and assemblies to resist solder joint failure is becoming a growing concern. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder with different electroless Ni-P thickness, with $HNO_3$ vapor's status, and with various pre-conditions. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder interconnection. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. A scanning electron microscopy (SEM) and an energy dispersive x-ray analysis (EDS) confirmed that there were three intermetallic compound (IMC) layers at the SAC405 solder joint interface: $(Ni,Cu)_3Sn_4$ layer, $(Ni,Cu)_2SnP$ layer, and $(Ni,Sn)_3P$ layer. The high speed shear energy of SAC405 solder joint with $3{\mu}m$ Ni-P deposit was found to be lower in pre-condition level#2, compared to that of $6{\mu}m$ Ni-P deposit. Results of focused ion beam and energy dispersive x-ray analysis of the fractured pad surfaces support the suggestion that the brittle fracture of $3{\mu}m$ Ni-P deposit is the result of Ni corrosion in the pre-condition level#2 and the $HNO_3$ vapor treatment.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

Studies of Valve Lifter for Automotive Heavy Duty Diesel Engine by Ceramic Materials I. Developmet of Ceramic-Metal Joint by Brazing Method (Ceramic 재질을 이용한 자동차용 대형 디젤 엔진 Valve Lifter 연구 I. Brazing Process에 의한 Ceramic-Metal 접합체 개발)

  • 윤호욱;한인섭;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.163-171
    • /
    • 1998
  • Continuously contacting with camshaft the face of Valve Lifter made of cast iron brings about abnormal wear such as unfairwear or earlywear because it is heavily loaded in the valve train systems as the engine gets more powered. This abnormal wear becomes a defet namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close aaction of the engine valve in the combustion chamber. The imperfect combustion in the end results in the major cause of air pollution and combustion chamber. The imperfectly combusted by unsuitable open or close action of the engine valve in the combustion chamber. The imperfect combustion in the end results in the major causes of air pollution and decrease of the engine output. Consequently to prevent this wear this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200 the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM & EDS Optical microscope. Also 2,500 hours high speed(3,000-4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to casting valve liter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  • PDF