• Title/Summary/Keyword: Interface Pressure

Search Result 1,042, Processing Time 0.028 seconds

Study on the AC Interfacial Breakdown Properties in the Interface between toughened Epoxy and Silicone Rubber (Toughened 에폭시와 실리콘고무 계면의 교류 절연파괴 현상에 관한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1079-1084
    • /
    • 2002
  • Because complex insulation method is used in EHV(extra high voltage) insulation systems, macro Interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. Interface between toughened epoxy and silicone rubber was selected as a interface in EHV insulation systems and tested AC interfacial breakdown properties with variation of many conditions to influence on electrical Properties, such as interfacial pressure, roughness and oil. Specimen was designed to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the direction of the interface between epoxy and silicone rubber by using FEM(finite elements method). It could control the interfacial pressure, roughness and viscosity of oil. From the result of this study, it was shown that the interfacial breakdown voltage is improved by increasing interfacial Pressure and oil. In particular, the dielectric strength saturates at certain interracial Pressure level. The decreasing ratio of the interfacial breakdown voltage in non-oiled specimen was increased by the temperature rising, while oiled specimen was not affected by temperature.

Variation of Thermal Contact Resistance for a Corroded Plane Interface of Metals (금속의 평면 접촉면에서 표면부식에 의한 열접촉 저항의 변화)

  • Kim, C.J.;Kim, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.256-262
    • /
    • 1991
  • The corrosion effects on thermal contact resistance were experimentally studied for a given contact interface of a couple of metals. 2 cylindrically shaped test pieces, the one was carbon steel whose surface was machined by lathe and the other was stainless steel, ground, were come into contact under pressure, and then submerged to $HNO_3$ gas environment. While the corrosion process was going on, the thermal contact resistance was measured with time. The experiment was performed for 2 cases; 1) Highly compress the test pieces and then bring them to $HNO_3$ gas environment. 2) Anteriorly corrode the interface under low contact pressure and then increase the contact pressure. The results were as follows; In 1st. case of experiment, the thermal contact resistance seemed to be very stable, and showed low values with a tendancy of small decrease with time. But in 2nd. case the resistance was unstable and jumped to a value of 200-250% more then that expected for uncontaminated interface. More over it demonstrated some increase with time.

  • PDF

Temperature, Electric Field, Pressure Dependency and Dielectric properties on the interface between XLPE and EPDM (XLPE와 EPDM의 계면에 따른 유전특성과 온도, 전계, 압력의존성)

  • 김동식;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.109-111
    • /
    • 1997
  • In this paper, we have evaluated temperature, electric field, Pressure dependency and dielectric properties of EPDM XLPE and EPDM/XLPE\`s interface. Temperature dependency of EPDM had great influence with dielectric properties, but pressure and applied voltage of EPDM had no effect on dielectric properties. Dielectric properties of XLPE were influenced by not only temperature but also pressure and applied voltage. We knowed that dielectric properties of EPDM/XLPE were trended toward tendency of those of EPDM

  • PDF

An Analysis of Tree Growth in the XLPE Interface (가교폴리에틸렌 계면에서의 트리성장 분석)

  • Kim, Cheol-Woon;Park, Hyun-Bin;Kim, Tae-Sung;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.90-94
    • /
    • 1998
  • This study aims at analyzing to treeing in the solid-solid interface which is insulation type of cable junction parts, the proceeding of tree-growth and electrical breakdown were research in the study. Interface was made artificially to detect how it influenced the insulating ability of the whole system, the specimen were XLPE generally used in cable. The interface conditions were divided into two parts. First condition being the one focused on the surface of interface, it was treated with sand paper (#80, #600, #1200). For the second condition, the pressure of interface was varied as the value of 1, 5, 10 [$kg/cm^2$]. Using above conditions, treeing and breakdown properties on tree-growth were respectively compared in details. As a result, breakdown time was shorter for the full range of supplied voltage in the case of interface existed in the joint than non-existed interface. In the case of existed interface, the interface which had high-interface pressure and painted with silicon insulating oil was the best in the aspect of breakdown characteristics.

  • PDF

A Study on the Correlation Evaluation of Confining Pressure and Pile-Soil Interface Strength Reduction Factor Using Numerical Analysis (수치해석에 의한 지중 구속압과 말뚝-지반 경계면 강도감소계수 관계 분석)

  • Tae-Gyeom Lee;Jung-Geun Han;Gigwon Hong;Seung-Kyong You
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • In order to evaluate the relationship between the ground confining pressure and the shear characteristics of the pile-soil interface, this study described the comparative results of the existing experimental results and the FEA results using the strength reduction factor. The strength reduction factor was applied to simulate the shear behavior of the pile-soil interface in finite element analysis(FEA). The analysis results showed that the maximum pullout resistance decreased due to the influence of low confining pressure, as the fines content increased. This trend was similar to the previous experimental research, and this FEA model simulated with the interface strength reduction factor was evaluated as reasonable. The analysis results of the variation in the interface strength reduction factor clearly showed that the interface strength reduction factor clearly increased at a high fines content when the confining pressure was 50kPa. However, it was found that the increase rate was low when the confining pressure was 100kPa and 150kPa. Therefore, confining pressure and fines content need to be considered in FEA to evaluate the shear behavior of the pile-soil interface.

Friction Welding of MA754 ODS Alloy Produced by Mechanical Alloying (기계적 합금법으로 제조된 MA754 산화물 분산강화 합금의 마찰압접에 관한 연구)

  • 강지훈
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.198-207
    • /
    • 1994
  • In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.

  • PDF

A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS (Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

DESIGN OF AIR SEAT CUSHION ORTHOSIS FOR PLEGIA

  • Hong, Jung-Hwa;Kim, Gyoo-Suk;Kim, Jong-Kwon;Mun, Mu-Seong;Ryu, Jei-Cheong;Lee, In-Huk;Lee, Jong-Keun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.121-123
    • /
    • 2002
  • The design of an air seat cushion for preventing decubitus ulcer includes many design factors such as the even distribution of interface pressure, the minimization of mean and peak interface pressure values, and the reduction of interface shear force and pressure gradient. It involves the anatomic condition of plegia's buttock as well as air pressure in air cells of cushion. As a result, a suitable design of the cushion satisfying the all requirements is a difficult problem. Therefore, an appropriate and effective numerical tool to develop an air cushion orthosis is required. The purpose of the present study was to develop an air seat cushion orthosis having optimized air cells for evenly distributed interface pressure between the buttock and cushion surface. For the purpose, an advanced finite element (FE) model for the design of air cushion was developed. Since the interface pressure and shear force behavior, as well as stress analyses were primary concern, a FE air cell model was developed and verified by the experiments. Then, the interactions of two cells were checked. Also, the human part of the developed numerical model includes every material property and geometry related to buttock and femoral parts. For construction of dimension data of buttock and femoral parts, CT scans were performed. A commercial FE program was employed for the simulation representing the seating process on the orthosis. Then, sensitive analyses were performed with varying design parameters. A set of optimal design parameters was found satisfying the design criteria of the orthosis. The results were utilized to produce a prototype of the orthosis. Experimentally, the buttock interface pressure distributions from the optimized and previous ones were compared. The new seat orthosis showed a significantly improved interface pressure characteristics compared to the most popular one in the market. The new orthosis will be used for the development of the AI(artificial intelligent) controlled seat orthosis fur prevention of decubitus ulcer fur various plegic patients and the elderly.

  • PDF

Pressure Distribution in Stump/Socket Interface in Response to Socket Flexion Angle Changes in Trans-Tibial Prostheses With Silicone Liner

  • Kang, Pil;Kim, Jang-Hwan;Roh, Jung-Suk
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 2006
  • This study examined the effects of socket flexion angle in trans-tibial prosthesis on stump/socket interface pressure. Ten trans-tibial amputees voluntarily participated in this study. F-socket system was used to measure static and dynamic pressure in stump/socket interface. The pressure was measured at anterior area (proximal, middle, and distal) and posterior area (proximal, middle, and distal) in different socket flexion angles ($5^{\circ}$, $0^{\circ}$, and $10^{\circ}$). Paired t-test was used to compare pressure differences in conventional socket flexion angle of $5^{\circ}$ with pressures in socket flexion angles of $0^{\circ}$ and $10^{\circ}$ (${\alpha}$=.05). Mean pressure during standing in socket flexion angle of $10^{\circ}$ decreased significantly in anterior middle area (19.7%), posterior proximal area (10.4%), and posterior distal area (16.3%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (19.3%) and decreased significantly in anterior distal area (19.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (19.6%) and increased significantly in anterior distal area (8.2%) compared with socket flexion angle of $5^{\circ}$. Peak pressure during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.0%) compared with socket flexion angle of $5^{\circ}$ and peak pressure during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (22.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure over 80% of peak pressure ($MP_{80+}$) during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.9%) and decreased significantly in anterior distal area (22.5%) compared with socket flexion angle of $5^{\circ}$. $MP_{80+}$ during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior distal area (34.1%) compared with socket flexion angle of $5^{\circ}$. Asymmetrical pressure change patterns in socket flexion angle of $0^{\circ}$ and $10^{\circ}$ were revealed in anterior proximal and distal region compared with socket flexion angle of $5^{\circ}$. To provide comfortable and safe socket for trans-tibial amputee, socket flexion angle must be considered.

  • PDF

Evaluation of the Functional and Non-functional Seat Sponge Effect in Sitting Chairs

  • Min, Seung Nam;Park, Se Jin;Subramaniyam, Murali;Lee, Heeran
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-265
    • /
    • 2014
  • Objective: The purpose of this study was to evaluate comfort levels of functional and non-functional chairs using subjective comfort rating, interface pressure measurement, muscle activity measurement, and skin temperature measurement. Background: Chairs are used for a prolonged period of time for sitting in many places such as the office, at university, at school, in industry, and so on. Almost all people use chairs in their everyday life. The functional properties of the chair are associated with comfort. Method: The subjective evaluation contains questions regarding chair comfort which can be rated with five point scale. The body-seat interface pressure was measured using a pressure mat system. The symmetry of sitting was measured using electromyography. The change in body part (thigh and buttock) temperature before and after sitting on a chair was measured with an infrared camera. Results: Participants rated significantly (p < 0.05) higher comfort scores for the functional chair in relation to the buttock and thigh region. Also, the participants felt a better cushion effect in the functional chair. When using the functional chair, lower interface pressure, better thermal comfort, and better symmetry of erector spinae muscle activity were observed. Conclusion: Overall, interface pressure measurement, muscle activity measurement, thermal imaging and subjective comfort score results showed that the functional chair was more comfortable than the non-functional chair. Application: The adopted methodologies could be used to measure the seating comfort of train seats.