• Title/Summary/Keyword: Interface Failure

Search Result 735, Processing Time 0.023 seconds

On the Implementation of Failure Diagnosis System for Naphtha Reforming Process (나프타 개질공정을 위한 이상 진단시스템의 구현)

  • Cha, Un-Ok
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.1
    • /
    • pp.91-100
    • /
    • 1992
  • A diagnosis system for naphtha reforming process has been designed and implemented using expert system building technique. The system is composed of knowledge base, inference engine, user interface, database and database interface. The concept and the method of this system may be applied to development of other systems for the reforming process.

  • PDF

Bond Characteristics at the Interface between HMA Surface and RCC Base (아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구)

  • Hong, Ki;Kim, Young Kyu;Bae, Abraham;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

Implementation of Integrated Interface based on Wire and Wireless Dual Network for Ensuring the Reliability of Intelligent LED Lighting System (지능형 LED 조명 시스템의 신뢰성 확보를 위한 유무선 이중망 통합 인터페이스 구현)

  • Lee, Un-Seon;Park, Tae-Jin;Park, Man-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.306-312
    • /
    • 2014
  • The ZigBee communication method, which is the most frequently applied to the LED lighting control system, has drawbacks of low-speed and low-capacity, and the communication failure possibility due to environmental influences is on the rise. Therefore, it is important to secure the communication reliability by applying an integrated interface with a wire-wireless dual-network. This paper developed a communication module, which has a platform converging and combining the ZigBee of USN environments with the PLC of power line communication environments, to implement a dualized communication interface system supporting the wire-wireless integrated protocol, and implemented a wire-wireless networking device and a control system software technology. As a result, it was automatically switched into the PLC communication within 4.4 seconds on average when there was an access failure in the ZigBee communication network, so a reliable communication network was built.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.

A Modification of Human Error Analysis Technique for Designing Man-Machine Interface in Nuclear Power Plants (원자력 발전소 주제어실 인터페이스 설계를 위한 인적오류 분석 기법의 보완)

  • Lee, Yong-Hui;Jang, Tong-Il;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-42
    • /
    • 2003
  • This study describes a modification of the technique for human error analysis in nuclear power plants (NPPs) which adopts advanced Man-Machine Interface (MMI) features based on computerized working environment, such as LCOs. Flat Panels. Large Wall Board, and computerized procedures. Firstly, the state of the art on human error analysis methods and efforts were briefly reviewed. Human error analysis method applied to NPP design has been THERP and ASEP mainly utilizing Swain's HRA handbook, which has not been facilitated enough to put the varied characteristics of MMI into HRA process. The basic concepts on human errors and the system safety approach were revisited, and adopted the process of FMEA with the new definition of Error Segment (ESJ. A modified human error analysis process was suggested. Then, the suggested method was applied to the failure of manual pump actuation through LCD touch screen in loss of feed water event in order to verify the applicability of the proposed method in practices. The example showed that the method become more facilitated to consider the concerns of the introduction of advanced MMI devices, and to integrate human error analysis process not only into HRA/PRA but also into the MMI and interface design. Finally, the possible extensions and further efforts required to obtain the applicability of the suggested method were discussed.

Containment Failures of Oil Restricted by Vertical Plates in Current (유벽에 갇힌 기름층의 조류중 손실에 관한 연구)

  • Song Museok;Hyun Beom-Soo;Suh Jung-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.40-51
    • /
    • 1998
  • The interaction of contained oil slicks with current was investigated with a two-dimensional experimental setup in the circulating water channel facility. A vertical plate was used to contain the oils against the currents and the evolution of the oil slick, mainly focusing on the water/oil interface, was examined with an aid of a laser sheet. Two different oils - soy bean oil and diesel oil - were studied with varying the current speed (10 cm/sec to 35 cm/sec), the barrier depth (4 cm and 8 cm) and the volume of oil (2 liter to 12 liter). Different types of the interface behavior were observed according to the conditions and their mechanism was discussed based basically on the dimensional analysis. The critical speeds of two types of oil loss mechanism (entrainment failure and drainage failure) were also examined.

  • PDF

A Finite Element Analysis of Stress on the Femoral Stem with Resorption of Proximal Medial Femur after Total Hip Replacement (대퇴골 근위부 골흡수가 인공 고관절 대퇴 stem에 미치는 응력에 관한 연구-FEM을 이용한 분석)

  • 김성곤
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.183-188
    • /
    • 1994
  • In clinical orthopaedics, bone resoption in the cortex is often seen post operatively on X-rays or bone densitometry after total hip replacement (THR) in the form of cortical osteoporosis or atropy. Stress shielding of bone occurs, when a load, normally carried by the bone alone, is shared with an implant as a result, the bone stresses are abnormal and with remodelling analysis this may cause extensive proximal bone resoption, possibly weakening the bone bed to the point of failure. The author made finite element models of the cemented and non-cemented type implanted femoral stem with bone resorption of the proximal medial femur and studied the feed back effect of the various degree of bone resoption to THR system by parametric analysis on the stress of the femoral stem and interface. The results of the present finite element analysis implied that the extent of proximal bone resorption has the effect of more increasing stress on the distal stem tip, cement mantle and interface in both type of femoral stem and this high distal stress possibly can cause the mechanical failure of loosening or failure after THR.

  • PDF

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem;Hammoud, Farid
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2021
  • Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

An experimental study of the mechanical performance of different types of girdling beams used to elevate bridges

  • Fangyuan Li;Wenhao Li;Peifeng Wu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.563-571
    • /
    • 2023
  • Girdling underpinning joints are key areas of concern for the pier-cutting bridge-lifting process. In this study, five specimens of an underpinning joint were prepared by varying the cross-sectional shape of the respective column, the process used to treat the beam-column interface (BCI), and the casting process. These specimens were subsequently analyzed through static failure tests. The BCI was found to be the weakest area of the joint, and the specimens containing a BCI underwent punching shear failure. The top of the girdling beam (GB) was subjected to a circumferential tensile force during slippage failure. Compared to the specimens with a smooth BCI, the specimens subjected to chiseling exhibited more pronounced circumferential compression at the BCI, which in turn considerably increased the shear capacity of the BCI and the ductility of the structure. The GB for the specimens containing a column with a circular cross-section exhibited better shear mechanical properties than the GB of other specimens. The BCI in specimens containing a column with a circular cross-section was more ductile during failure than that in specimens containing a column with a square cross-section.