• Title/Summary/Keyword: Interface Bonding

Search Result 718, Processing Time 0.024 seconds

Magnetic Property and Chemical Reaction in the Interface of Ferrite and Glass (페라이트와 유리의 접합계면반응의 자기적 특성)

  • 제해준;박병원;홍성현;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.357-364
    • /
    • 1993
  • Chemical reaction occurred in the interface of Mn-Zn ferrite and glass after bonding. Effects of the formation of reaction layer on the magnetic properties were investigated. The composition of glass was 23PbO-61SiO2-6ZnO-8Na2O-2K2O and the ferrite was chosen to have a high permeability. Toroid samples of ferrites bonded with glasses, were heat-treated at $700^{\circ}C$, 80$0^{\circ}C$ and 90$0^{\circ}C$ for 1h. The reaction was observed to increase with bonding temperature, resulting in the development of reaction layer. Subsequently the initial permeability was found to be decreased. The permeabilities decreased by 25% with increasing bonding temperature from $700^{\circ}C$ to 80$0^{\circ}C$. At the bonding temperature of 90$0^{\circ}C$, the permeability was decreased by 45%, compared to that of 80$0^{\circ}C$.

  • PDF

Effect of Plasma Treatment on the Bond Strength of Sn-Pb Eutectic Solder Flip Chip (Sn-Pb 공정솔더 플립칩의 접합강도에 미치는 플라즈마 처리 효과)

  • 홍순민;강춘식;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.498-504
    • /
    • 2002
  • Fluxless flip chip bonding process using plasma treatment instead of flux was investigated. The effect of plasma process parameters on tin-oxide etching characteristics were estimated with Auger depth profile analysis. The die shear test was performed to evaluate the adhesion strength of the flip chip bonded after plasma treatment. The thickness of oxide layer on tin surface was reduced after Ar+H2 plasma treatment. The addition of H2 improved the oxide etching characteristics by plasma. The die shear strength of the plasma-treated Sn-Pb solder flip chip was higher than that of non-treated one but lower than that of fluxed one. The difference of the strength between plasma-treated specimen and non-treated one increased with increase in bonding temperature. The plasma-treated flip chip fractured at solder/TSM interface at low bonding temperature while the fracture occurred at solder/UBM interface at higher bonding temperature.

Study on Diffusion Bonding of Stainless Steel to Mild Steel (연강-스테인리스강의 확산접합에 관한 연구)

  • Kim, S.T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.17-26
    • /
    • 1998
  • Cladding of stainless steel on mild steel was prepared by diffusion bonding process. The bond strength increased with an increase of bonding temperature and time. It was also found that the bond strength increased as the surface roughness decreased. After the diffusion bonding of stainless steel-mild steel, the mild steel part near the bonded interface showed higher strength than the base steel due to the migration of chromium and nickel from stainless steel to mild steel. Carbon migration from mild steel gave effect on the formation of chromium carbides at grain boundaries of stainless steel, the fractograpohic features of the imperfectly bonded interface showed rather coarse dimples in the mild steel part and very fine dimples in the stainless steel part.

  • PDF

Reaction Bonding of $ZrO_2$ and NiTi : Reaction Products Analyses on $ZrO_2/NiTi$ Bonding Interface with AEM ($ZrO_2$와 NiTi 합금의 반응접합 : 분석투과전자현미경을 이용한 $ZrO_2/NiTi$ 접합층 반응생성물 분석)

  • Kim, Young-Jung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.949-954
    • /
    • 1993
  • Microstructural development at the ZrO2/NiTi bonding interface and reaction products were examined and identified with SEM and AEM. Ti-oxide, Ti2Ni and Ni2Ti layer were observed whose thickness depends on bonding temperature typically. The development of Ti-oxide layer is related with oxygen ion in ZrO2 and liquid phase Ti2Ni. It is considered that compositional deviation from homogeneity and residual stress caused by thermal expansion mismatch are closely related with the formation of the Ti2Ni phase.

  • PDF

Processing and Characterization of a Direct Bonded SOI using SiO$_2$ Thin Film (SiO$_2$ 박막을 이용한 SOI 직접접합공정 및 특성)

  • 유연혁;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.863-870
    • /
    • 1999
  • SOI(silicon on insulafor) was fabricated through the direct bonding using (100) Si wafer and 4$^{\circ}$off (100) Si wafer to investigate the stacking faults in silicon at the Si/SiO2 oxidized and bonded interface. The treatment time of wafer surface using MSC-1 solution was varied in order to observe the effect of cleaning on bonding characteristics. As the MSC-1 treating time increased surface hydrophilicity was saturated and surface microroughness increased. A comparison of surface hydrophilicity and microroughness with MSC-1 treating time indicates that optimum surface modified condition for time was immersed in MSC-1 for 2 min. The SOI structure directly bonded using (100) Si wafer and 4$^{\circ}$off (100) Si wafer at the room temperature were annealed at 110$0^{\circ}C$ for 30 min. Then the stacking faults at the bonding and oxidation interface were examined after the debonding. The results show that there were anomalies in the gettering of the stacking faults at the bonded region.

  • PDF

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

A Study on the Characteristics of the interface in Tube / Tubesheet of the Nuclear Steam Generator by Explosive Bonding (폭발접합된 원자력 증기발생기 튜브/튜브시트 계면 특성에 관한 연구)

  • 이병일;공창식;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.32-50
    • /
    • 1999
  • This study deals with interface charactristics of tube and tubesheet of the nuclear steam generator by the explosive expansion in order to take advantage of optimum expansion ratio, pull-out strength and leakage tightness and improvement of the resisitance on the stress corrosion cracking for low residual stress. The paper also show the relationship between roll, hydraulic and explosive expansion. The results obtain are as follows (1) Because of the explosive bonding is to use the high speed pressure and energy by the explosive, workability is good, bonding region is homogenous (2) Expansion ratio is 2.7%, Pull-out strength 850kg, Leakage strength $500kg/cm^2$. Clearance gap is 10~30mm in case of explosive expansion and interface structure of the tube and tubesheet is optimum condition. (3) As the transition region of the explosive expansion is inactive, the resistance of the stress corrosion cracking is increases 30~40% compare to the roll and hydraulic expansion.

  • PDF

Effect of Surface Condition on the Bonding Characteristics of 3Y-$ZrO_2$-Metal Bracket System (3Y-$ZrO_2$ 세라믹과 교정용 브라켓계에서 세라믹의 표면 조건에 따른 접착 거동의 변화)

  • O, Seon-Mi;Kim, Jin-Seong;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • Purpose: To investigate shear bonding strength between dental zirconia ceramics with different surface treatment and metal bracket. Methods: Zirconia ceramics(LAVA, 3M ESPE, USA) were divided to 4 groups according to their surface treatment; no surface treatment(G1), sand blasting(G2), silane coating(G3), and sand blasting+silane coating(G4). Specimens were bonded to metal bracket using resin bond($Transbond^{TM}XT$, 3M Unitek, USA). Shear bond strength was measured using universal test machine(3366 INSTRON. U.S.A) with cross head speed of 1 mm/min. Microstructural investigation for fracture surface was performed after shear test. Results: Shear bonding strengths of single surface treatment groups (G2 and G3) were higher than no treatment group(G1). Combined Treatment Group (G4) showed the highest shear bond strength of 9.15MPa. Microstructural observation shows that higher shear bonding strength was obtained when debonding was occurred at metal bracket/resin interface rather than zirconia ceramic/resin interface. Conclusion: Surface treatment of zirconia is necessary to obtain higher bonding strength. Combined treatment can be more effective when surface the surfaces are kept clean and homogeneous.

AN EXPERIMENTAL STUDY ON THE BONDING STRENGTH BETWEEN PORCELAIN AND Ni-Cr BASED PORCELAIN ALLOY (도재(陶材)와 도재(陶材) 소부용(燒付用) Ni-Cr계(系) 합금간(合金間)의 결합력(結合力)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Kyoung-Sun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.19 no.1
    • /
    • pp.61-73
    • /
    • 1981
  • The effects of the opaque porcelain firing temperature, the bonding agent and the degassing prior to the opaque firing On the bond strength were investigated by means of the tensile shear stIe$. The diffusional behaviours at the interface of the porcelain and the alloy, and .the microstructures of the ceramic and metal composite were studied for understanding the bonding mechanism. The results obtained in this experiment were summarizd as follow; 1. With no application of bonding agent, the tensile shear strength of the specimen firing at $1840^{\circ}F$ was higher than that of the specimen firing at $1760^{\circ}F$. 2. The highest bond strength was obtained by application of bonding agent without degassing prior to the opaque firing. 3. Application of bonding agent after the degassing showed the lowest bond strength. 4. The greater number of pores were observed at the firing temperature of $1840^{\circ}F$ than that of $1760^{\circ}F$ in the porcelain and the interface respectively.

  • PDF

Crosslinkable Warm-melt-Polyurethanes Offer Instant-fix Characteristics

  • Merz, Peter W.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • Adhesives are becoming increasingly accepted for advanced engineering/boding tasks. Therefore the understanding of the basic principles and the benefits of elastic bonding and structural bonding respectively is of utmost importance. Structural bonding means adhesive performance in load-bearing environments. Furthermore. the time to achieve handling strength has an impact on the economics of an assembly line. The paper gives briefly a summary about the fundamentals of elastic bonding and discusses different adhesive systems in the context of handling strength. Hereby the focus lies on the Warm Melt Technology, and its potential is compared to standard adhesives (l-part, 2-part and Booster Technology, a special 2-C system). Examples illustrate their economical benefits. Main Points : ${\bullet}$ The basic principles and benefits of elastic bonding ${\bullet}$ Warm-melt Technology in comparison with standard adhesives ${\bullet}$ Handling strength an economic issue ${\bullet}$ Combination with Booster-Technology, a special 2-C PUR system ${\bullet}$ Presentation of real world applications Learning Objectives: ${\bullet}$ Fundamentals of elastic bonding ${\bullet}$ Warm-melt Technology: correlation between chain length and cristallinity ${\bullet}$ Handling strength and curing speed of various systems in comparison ${\bullet}$ Real world applications illustrate the potential of the Warm-melt Technology.

  • PDF