• Title/Summary/Keyword: Interest Prediction

Search Result 481, Processing Time 0.026 seconds

The Impact of Late-night scapes on Healing and Attitude in Night Tour (심야관광에서 심야스케이프가 힐링경험과 태도에 미치는 영향)

  • Jeong, Yun-Hee
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.257-270
    • /
    • 2018
  • Although healing is now developing an interest in extending tourism, there have been few studies in this area. Especially late-night tour is closely related to healing experience, but there are little researches that help us understand healing in late-night tour. This study was conducted to examine the relationships among late-night scapes(light aesthetics, sharing mood, culture uniqueness), healing experience(stress reduce and psychological happiness), attitude toward late-night tour. We collected data involving various late-night tourist, and used 198 respondents to analyze these data using LISREL structural modeling. Light aesthetics and sharing mood had positive effects on stress remove, but Culture uniqueness didn't have a signigicant effect on stress remove, unlikely the prediction. And all late-night shape had positive effects on psychological happiness. Also we tested the effects of the healing experience(stress remove and psychological happiness) on attitude. In the final section, we discussed several limitations of our study and suggested directions for future research. We concluded with a discussion of managerial implications, including the potential to advance understanding late-night tourist and implying an enhanced ability to satisfy target consumers of late-night tour.

A Study on the Time-Sectional Analysis of Apartment Housing related research in Korea (국내 아파트 관련 연구의 연구주제 시계열 분석)

  • Kim, Tae-Sok;Park, Jong-Mo;Park, Eu-Gene;Han, Dong-Suk
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • Currently, apartments have become an important research subject for the overall area of politics, economics, and culture as well as urban architectural study. However, there are few analyses of the research trends related to the current interest in the apartment research and prediction of the future changes of an apartment in politics and industry. In this study, the research information related to the apartment has classified, and the changes in the research trends have analyzed. Based on the classified data, the first thesis and dissertation related to the apartment and changes of academic notation have discovered. In addition, future interests and future research directions through Frequency of Appearance, Degree Centrality Analysis, and Betweenness Centrality Analysis of author keywords were predicted. As a result of the analysis, 'Space,' 'Residential Mobility' and 'Apartment Complex' studies were found to be important research topics throughout the entire period. 'Han Gang Apartment,' 'Small Size Apartment,' 'Civic Apartments,' 'Jamsil,' and 'Child' were newly interested topics until 70's era. '(Super) High-rise Apartment,' 'Perception,' 'Jugong Apartment,' 'Housing Environment,' 'Housewife,' 'Apartment Layout,' and 'Busan' were newly interested topics during the 80's and 90's era. 'Apartment Price,' 'Energy,' 'Remodeling,' 'Noise,' 'Resident Satisfaction,' 'Community,' and 'Apartment Lotting-out' were newly interested topics after the year 2000. New concerns for last decade are found to be 'Super High-rise Apartment', 'Remodeling', 'Indoor'(2007), 'Apartment Reconstruction Project', 'Brand', 'AHP', 'Housing Environment'(2008), 'Ventilation'(2009), 'Apartment Lotting-out'(2010), 'Economic Assessment'(2011), 'Cost'(2012), 'Green Building', 'Apartment Sales', 'Law', 'Society'(2013), 'Floor Impact Noise', 'Seoul'(2014), 'Noise'(2015), 'Hedonic Model'(2016). In addition, following research topics are expected to be active in the future: In maturity stage of the research development is going to be 'Apartment Price', 'Space', 'Management of Apartment Housing'; the hedonic model, which is research growth and development stage, is going to be '(Floor Impact) Noise', 'Community', 'Energy.

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.

Chest CT Image Patch-Based CNN Classification and Visualization for Predicting Recurrence of Non-Small Cell Lung Cancer Patients (비소세포폐암 환자의 재발 예측을 위한 흉부 CT 영상 패치 기반 CNN 분류 및 시각화)

  • Ma, Serie;Ahn, Gahee;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Non-small cell lung cancer (NSCLC) accounts for a high proportion of 85% among all lung cancer and has a significantly higher mortality rate (22.7%) compared to other cancers. Therefore, it is very important to predict the prognosis after surgery in patients with non-small cell lung cancer. In this study, the types of preoperative chest CT image patches for non-small cell lung cancer patients with tumor as a region of interest are diversified into five types according to tumor-related information, and performance of single classifier model, ensemble classifier model with soft-voting method, and ensemble classifier model using 3 input channels for combination of three different patches using pre-trained ResNet and EfficientNet CNN networks are analyzed through misclassification cases and Grad-CAM visualization. As a result of the experiment, the ResNet152 single model and the EfficientNet-b7 single model trained on the peritumoral patch showed accuracy of 87.93% and 81.03%, respectively. In addition, ResNet152 ensemble model using the image, peritumoral, and shape-focused intratumoral patches which were placed in each input channels showed stable performance with an accuracy of 87.93%. Also, EfficientNet-b7 ensemble classifier model with soft-voting method using the image and peritumoral patches showed accuracy of 84.48%.

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.

A Study on Machine Learning of the Drivetrain Simulation Model for Development of Wind Turbine Digital Twin (풍력발전기 디지털트윈 개발을 위한 드라이브트레인 시뮬레이션 모델의 기계학습 연구)

  • Yonadan Choi;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2023
  • As carbon-free has been getting interest, renewable energy sources have been increasing. However, renewable energy is intermittent and variable so it is difficult to predict the produced electrical energy from a renewable energy source. In this study, digital-twin concept is applied to solve difficulties in predicting electrical energy from a renewable energy source. Considering that rotation of wind turbine has high correlation with produced electrical energy, a model which simulates rotation in the drivetrain of a wind turbine is developed. The base of a drivetrain simulation model is set with well-known state equation in mechanical engineering, which simulates the rotating system. Simulation based machine learning is conducted to get unknown parameters which are not provided by manufacturer. The simulation is repeated and parameters in simulation model are corrected after each simulation by optimization algorithm. The trained simulation model is validated with 27 real wind turbine operation data set. The simulation model shows 4.41% error in average compared to real wind turbine operation data set. Finally, it is assessed that the drivetrain simulation model represents the real wind turbine drivetrain system well. It is expected that wind-energy-prediction accuracy would be improved as wind turbine digital twin including the developed drivetrain simulation model is applied.

Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data (분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발)

  • Yonggyu, Choi;Youngseok, Song;Soon Jee, Seol;Joongmoo, Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.177-188
    • /
    • 2022
  • Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.