• Title/Summary/Keyword: Interest Prediction

Search Result 481, Processing Time 0.025 seconds

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Estimating Interest Levels based on Visitor Behavior Recognition Towards a Guide Robot (안내 로봇을 향한 관람객의 행위 인식 기반 관심도 추정)

  • Ye Jun Lee;Juhyun Kim;Eui-Jung Jung;Min-Gyu Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.463-471
    • /
    • 2023
  • This paper proposes a method to estimate the level of interest shown by visitors towards a specific target, a guide robot, in spaces where a large number of visitors, such as exhibition halls and museums, can show interest in a specific subject. To accomplish this, we apply deep learning-based behavior recognition and object tracking techniques for multiple visitors, and based on this, we derive the behavior analysis and interest level of visitors. To implement this research, a personalized dataset tailored to the characteristics of exhibition hall and museum environments was created, and a deep learning model was constructed based on this. Four scenarios that visitors can exhibit were classified, and through this, prediction and experimental values were obtained, thus completing the validation for the interest estimation method proposed in this paper.

Health Examination Data Based Medical Treatment Prediction by Using SVM (SVM을 이용한 건강검진정보 기반 진료과목 예측)

  • Piao, Minghao;Byun, Jeong-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • Nowadays, living standard is improved and people have high interest to the personal health care problem. Accordingly, people desire to know the personal physical condition and the related medical treatment. Thus, there is the necessary of the personalized medical treatment, and there are many studies about the automatic disease diagnosis and the related services. Those studies focus on the particular disease prediction which is based on the related particular data. However, there is no studies about the medical treatment prediction. In our study, national health data based medical treatment predictor is built by using SVM, and the performance is evaluated by comparing with other prediction methods. The experimental results show that the health data based medical treatment prediction resulted in the average accuracy of 80%, and the SVM performs better than other prediction algorithms.

Influence of Interests in Geographical Indication on the Prediction of Price Change of Agricultural Product : Case of Apples (지리적 표시제에 대한 관심이 농산물 가격변화 예측에 미치는 영향 연구 : 사과를 사례로)

  • Choi, Hyo Shin;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.359-367
    • /
    • 2015
  • Geographical Indication (GI) has been used with the expectation to influence customer buying behavior. In this research, we empirically investigate if such relationship exists using apple price changes in Korea along with web search traffic reflecting customers' interest in GI. The experimental results indicate that the apple price of the past, apple supply and web search traffic including GI name were significant on the prediction of price change of Chungju while web search traffic of regional name and that of product were significant for Cheongsong apples with GI. In Yeongcheon with no GI, the apple price of the past turns out to be significant only. The results indicated that interests in GI can help the price prediction but the regional name itself can play the same role, if the GI product is well known in association with the region.

Stock Price Prediction Based on Time Series Network (시계열 네트워크에 기반한 주가예측)

  • Park, Kang-Hee;Shin, Hyun-Jung
    • Korean Management Science Review
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • Time series analysis methods have been traditionally used in stock price prediction. However, most of the existing methods represent some methodological limitations in reflecting influence from external factors that affect the fluctuation of stock prices, such as oil prices, exchange rates, money interest rates, and the stock price indexes of other countries. To overcome the limitations, we propose a network based method incorporating the relations between the individual company stock prices and the external factors by using a graph-based semi-supervised learning algorithm. For verifying the significance of the proposed method, it was applied to the prediction problems of company stock prices listed in the KOSPI from January 2007 to August 2008.

The Audible Noise Prediction of the Substation due to Transformer Audible Noise and the Field Application of the Low Noise Transformer (변압기 소음에 의한 변전소 소음예측 및 저소음 변압기 현장적용)

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Kim, Gyeong-Tak;Woo, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1382-1387
    • /
    • 2010
  • Recently, there has been a growing interest in the environmental conservation. Accordingly, problems related to the audible noise of transformers have became more frequent. Therefore, it is urgent to find a fundamental solution about the audible noises in the substations. This paper described a sort of fundamental solution to solve the noise problem. As a fundamental solution, we suggested the proper audible noise level of transformers through noise prediction in the substation construction phase. And we applied the low noise transformers which have the predicted noise level. As the result, we are able to satisfy the noise regulation through measuring 43.6dBA at the boundary of substation. It is confirmed that the average error rate of prediction was within 3 percent.

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

PREDICTION MEAN SQUARED ERROR OF THE POISSON INAR(1) PROCESS WITH ESTIMATED PARAMETERS

  • Kim Hee-Young;Park You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.37-47
    • /
    • 2006
  • Recently, as a result of the growing interest in modeling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of these models is the integer-valued autoregressive (INAR) models. However, when modeling with integer-valued autoregressive processes, the distributional properties of forecasts have been not yet discovered due to the difficulty in handling the Steutal Van Ham thinning operator 'o' (Steutal and van Ham, 1979). In this study, we derive the mean squared error of h-step-ahead prediction from a Poisson INAR(1) process, reflecting the effect of the variability of parameter estimates in the prediction mean squared error.

Bankruptcy predictions for Korea medium-sized firms using neural networks and case based reasoning

  • Han, Ingoo;Park, Cheolsoo;Kim, Chulhong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.203-206
    • /
    • 1996
  • Prediction of firm bankruptcy have been extensively studied in accounting, as all stockholders in a firm have a vested interest in monitoring its financial performance. The objective of this paper is to develop the hybrid models for bankruptcy prediction. The proposed hybrid models are two phase. Phase one are (a) DA-assisted neural network, (b) Logit-assisted neural network, and (c) Genetic-assisted neural network. And, phase two are (a) DA-assisted Case based reasoning, and (b) Genetic-assisted Case based reasoning. In the variables selection, We are focusing on three alternative methods - linear discriminant analysis, logit analysis and genetic algorithms - that can be used empirically select predictors for hybrid model in bankruptcy prediction. Empirical results using Korean medium-sized firms data show that hybrid models are very promising neural network models and case based reasoning for bankruptcy prediction in terms of predictive accuracy and adaptability.

  • PDF

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.