• Title/Summary/Keyword: Interdigital capacitor

Search Result 32, Processing Time 0.024 seconds

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.

Design for Frequency Tripler Using Novel Bandpass Filter with Low Insertion Loss (낮은 삽입손실을 갖는 새로운 대역통과 필터를 이용한 주파수 3체배기 설계)

  • Min, Jun-Ki;Cho, Seung-Yong;Kim, Hyun-Jin;Kim, Yong-Hwan;Lee, Kyoung-Hak;Kim, Dae-Hee;Yun, Ho-Seok;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.1031-1036
    • /
    • 2006
  • This paper proposes a novel BPF structure with less insertion loss and small size instead of the existing coupled line BPF for the output of the tripler using APDP (Anti-Parallel Diode Pair). This proposed BPF consists of the interdigital capacitor and spiral open stub. The proposed BPF has the insertion loss of less than 0.7dB within the band $(16.41{\sim}19.23GHz)$. The conversion loss of the tripler is about $16.6{\sim}18.5dB$ $(flatness<{\pm}1dB)$ at $5.72{\sim}6.28GHz$ of fundamental frequency. Its fundamental frequency and the fifth harmonic suppression characteristic at 6GHz are -32.16dBc and -44.6dBc, respectively And its phase noise attenuation characteristic is about 9.5dB at 100kHz.