• Title/Summary/Keyword: Interdigital capacitance

Search Result 13, Processing Time 0.026 seconds

Characterization of Ferroelectric Thin Film in Microwave Region (마이크로파대에서의 강유전 박막 유전 특성 평가)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1061-1067
    • /
    • 2004
  • In this study, ferroelectric (Ba,Sr)TiO$_3$ and high temperature superconductor YBCO thin films were fabricated by PLD (Pulsed Laser Deposition) method and tuneable bandstop filters were implemented with two different IDC(Interdigital Capacitance) gap patterns, 20${\mu}{\textrm}{m}$ and 30${\mu}{\textrm}{m}$ using these two thin film layers. The resonant frequency was changed by DC bias voltage. By comparing measured results with simulation, the dielectric properties of ferroelectric thin film have been extracted. The permittivity was 820 ~ 900 at 30 K and had an acceptable error range but the loss tangent had a great difference, 0.018 in 30${\mu}{\textrm}{m}$ IDC gap pattern and 0.037 in 20 ${\mu}{\textrm}{m}$.

The Design and fabrication of Capacitive Humidity Sensor Having Interdigital Electrodes and Its Signal Processing Circuit (빗살전극형 정전용량형 습도센서와 그 신호처리회로의 설계 제작)

  • Kang, Jeong-Ho;Lee, Jae-Yong;Kim, Woo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.26-30
    • /
    • 2006
  • For the purpose of developing capacitive humidity sensor having interdigital electrodes, interdigital electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thickness. For the development of ASIC, switched capacitor signal processing circuits for capacitive humidity sensor were designed and simulated by Cadence using $0.25{\mu}m$ CMOS process parameters. The signal processing circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control. The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is $0.4%R.H./^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of $3%R.H.{\sim}98%R.H.$. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigital electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc.

A Study on Biomaterial Detection Using Single-Walled Carbon Nanotube Based on Interdigital Capacitors (인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브를 이용한 바이오 물질 검출에 관한 연구)

  • Lee, Hee-Jo;Lee, Hyun-Seok;Yoo, Kyung-Hwa;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.891-898
    • /
    • 2008
  • In this paper, we have studied on the possibilities of the biomaterial detection using single-walled carbon nanotube (SWNT) based on interdigital capacitors. For the four different configurations, such as interdigital capacitor, SWNT in the $5\;{\mu}m$ gap interdigital capacitor, biotinlated SWNT, and biotin and sreptavidin immobilization cases, the resonant frequency has been measured as 10.02 GHz, 11.02 GHz, 10.82 GHz, and 10.22 GHz, respectively. Assuming that the resonant frequency reflects the capacitance changes due to binding of two-different permittivity biomaterials, we have suggested an equivalent circuit model based on measured results, confirming the capacitance changes. For biotinlated SWNT and biotin-streptavidin immobilization cases, the capacitances are $C_b=0.55\;pF$ and $C_s=0.95\;pF$. In this work, we experimentally demonstrated that the specific biomaterial binding causes the capacitance change and therefore this gives rise to resonant frequency. In conclusion, we confirmed the sufficient possibility as CNT biosensor because an analyte biomaterial(streptavidin) binding arouses a considerable resonant frequency change.

A Novel Inter-Digital Tunable Capacitor for Low-Operation Voltage Applications

  • Lee, Young Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.586-589
    • /
    • 2012
  • In this paper, a tunable capacitor like an interdigital one is presented for low-voltage applications. In order to reduce operation voltage by enhancing fringing electric fields, two finger-patterned electrodes are vertically separated by employing a multi-layer thin film dielectric of a para-/ferro-/para-electrics without spacing between electrodes. The proposed tunable capacitor was fabricated on a quartz wafer and its characteristics are analyzed in terms of effective capacitance and tunability with a function of applied voltages, compared to the conventional interdigital capacitor (IDC). At 8V and 2 GHz, the proposed tunable capacitor shows the tunability of 18 % that is 10.3 % higher than that of the compared one.

  • PDF

The Simulation and Characterization of Interdigital Capacitor for Microwave Applications (마이크로 웨이브 응용을 위한 Iterdigital 캐패시터의 시뮬레이션 및 특성분석)

  • Woo, Tae-Ho;Yoon, Sang-Oh;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.353-353
    • /
    • 2008
  • 트랜지스터 속도는 현저하게 향상되어지는 반면에 RFICs(RF integrated circuits)는 대용량화, 고속화, 고집적화, 소형화, 고 효율화 온칩(on-chip) 수동소자의 부재에 의해 발전을 이루지 못하였다. 즉, 최근 전자기기의 집적화, 초소형화 됨에 따라 실장 밀도를 높이기 위해 부품의 소형화가 강하게 요구되는 동시에 Radio Frequency(RF)에서 이용가능한 수동소자인 capacitor를 개발하고자 본 논문에서는 손가락 모양(interdigital configuration)을 갖는 RF capacitor를 Ansoft사의 HFSS를 이용하여 이상적인 S-parameter, 정전용랑(capacitance), 손실계수(loss tangent)를 도출하고자 한다. 680um의 $Al_2O_3$ 기판에 BST doped MgO을 30um, Chromium과 gold를 각각 5um로 증착시켰다. 핑거 개수 (n, number), 핑거 길이(1, length), 핑거 간격(g, gap), 핑거 너비(w, width)를 변화 시켜가면서 이상적인 결과 값에 가까운 모양 (interdigital configuration)을 얻을 수 있었다. 핑거 수 3 개 일 때 입력 값에 대하여 손실 없는 출력 값(투과값)을 갖는 $S_{21}$이 1.5GHz에서 6dB이하로 떨어졌으며 핑거 간격이 줄고 핑거 너비가 커지고 핑거길이가 커질수록 높은 캐패시턴스 값을 갖는 것을 확인 할 수 있었다.

  • PDF

Compact CMOS C-Band Bandpass Filter Using lnterdigital Capacitor

  • Kang, In-Ho;Wang, Xu-Guang
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.759-762
    • /
    • 2007
  • A novel miniaturized CMOS C-Band bandpass filter based on diagonally end-shorted coupled lines and interdigital capacitors is proposed. The utilized coupled lines structure reduced the configuration in size, as small as a few degrees. Moreover, the characteristic of interdigital capacitor, relatively high Q and good capacitance tolerance, accounts for the satisfied performance of this new filter. A two-stage bandpass filter was designed and fabricated with chip surface area only $1.02{\times}1.4\;mm^2$.

Analysis of Electrical Characteristics of Interdigital Capacitor with Graphenes (그래핀이 결합된 인터디지털 커패시터의 전기적 특성분석)

  • Lee, Hee-Jo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1064-1071
    • /
    • 2015
  • In this paper, the electrical characteristics of interdigital capacitor with single-layer and multi-layer graphene were compared and analyzed in the microwave region. In equivalent circuit, a capacitor coupled with graphene showed the clear difference in electrical components such as resistance, inductance, and capacitance. In particular, for the capacitor with single-layer graphene, additional inductance and resistance occurred and the electrode resistance was also increased. Meanwhile, the self-resonance frequency of capacitor was shifted toward lower frequency region and its transmitted characteristic was considerably improved at frequency ranging from 0.4 to 4 GHz. The electrical characteristics of the capacitor with multi-layer graphene were somewhat different than the bare capacitor. In conclusion, we could confirm that single-layer graphene greatly influenced the electrical characteristics and performances of interdigital capacitor compared to multi-layer graphene.

Analysis of the Dielectric Sensor for Cure Monitoring of Composite Materials (복합재료 경화모니터링용 유전센서의 해석)

  • 김진수;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1563-1572
    • /
    • 1995
  • The on-line cure monitoring during the cure process of fiber reinforced resin matrix composite material is important for the better quality and productivity. Among several cure monitoring methods, the dielectrometry that uses electrodes as its sensor is known to be the most promising method. In this study, the sensitivity of the dielectric sensor for the on-line cure monitoring was analyzed by finite element method and compared to the experimental results. Using the analytical results, the equation for the capacitance of the sensor was derived. Also, the optimal sensor design method was suggested after analyzing several different sensor shapes.

The Analysis of SAW Filter Characteristics Using Ouasi-Static Approximation (Ouasi-Static 근사화에 의한 탄성표면과 필터의 특성 해석)

  • 이동도;정영지;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.481-489
    • /
    • 1993
  • The charge distribution is calculated to analyze the quasi-static impedance of periodic interdigital transducer taking into account the effect of infinite neighboring electrodes. The charge distribution can be represented by the element factor and array factor. The radiation conductance, susceptance and static capacitance of the input and output IDT's with arbitrary voltages are obtained by the charge distribution. The impedance of apodized IDT, is analyzed by multi-track model in which IDT is represented by the parallel connection of the uniform tracks. The calculated input and output impedances are in good agreement with the experimental results.

  • PDF

Design of High-Sensitivity Compact Resonator using Interdigital-Capacitor Structure for Chipless RFID Applications (인터디지털-커패시터 구조를 이용한 Chipless RFID용 고감도 소형 공진기 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2021
  • In this paper, the design method for a high-sensitivity compact resonator for chipless RFID tags is proposed. Proposed high-sensitivity compact resonator uses an interdigital-capacitor structure instead of a capacitor-shaped strip structure in a conventional ELC resonator. The length of the electrode plate of the IDC structure is longer than that of the conventional capacitor-shaped structure, resulting in a larger equivalent capacitance of the resonator. This can lower the resonant peak frequency of the RCS characteristic. Two resonators with the same length of the square loop and the width of the strip are fabricated on an RF-301 substrate with a thickness of 0.8 mm. The experiment results show that the resonant peak frequency and value of the bistatic RCS for the ELC resonator were 4.305 GHz and -30.39 dBsm, whereas those of the proposed IDC resonator were 3.295 GHz and -36.91 dBsm. Therefore, the size of the resonator is reduced by 23.5% based on the measured resonant peak frequency of the RCS characteristic.