• Title/Summary/Keyword: Interdigital Band-Pass Filter

Search Result 16, Processing Time 0.021 seconds

Design of 5-order Interdigital Band-Pass Filter

  • Phally Phan;Donghoon Kang;Dal Ahn;Youna Jang
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.173-180
    • /
    • 2024
  • This study proposed an interdigital band-pass filter based on the microstrip transmission line. When designing a conventional structure for an interdigital filter based on the characteristics of the 5th order transmission line, seven resonators are required. By changing the impedance of the resonator adjacent to the feed line, the proposed interdigital band-pass filter was designed to reduce the number of resonators compared to conventional interdigital band-pass filters. Consequently, the resonator order decreased, and return and insertion losses become comparable to that in case of a conventional interdigital filter design. The proposed band-pass filter was designed with a center frequency of 2.75 GHz and a bandwidth of 1.5 GHz. Furthermore, based on various transmission characteristics such as group delay and coupling coefficient, two band-pass filters were designed, compared, and analyzed.

GA-Optimized Compact Broadband CRLH Band-Pass Filter Using Stub-Inserted Interdigital Coupled Lines

  • Jeon, Jinsu;Kahng, Sungtek;Kim, Hyunsoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • The design of a new compact band-pass filter is proposed, which is based on the microstrip composite right- and left-handed transmission- line (CRLH-TL) structure. Particularly, the interdigital coupled (IDC) lines of the CRLH geometry are proposed to be parted by inserting open stubs to meet the specifications on the passband. In addition, there is another pair of stubs to complete the design in a limited space. These are considered in the TL-based analysis and the design parameters are calculated by genetic algorithm optimization. The measurement is shown to be acceptable and agreeable with the circuit and electromagnetic field simulations. In addition, the zerothorder resonance (ZOR) phenomenon is verified.

Design and Implementation of BPF Using a Symmetric Coupled Line (대칭형 결합선로를 이용한 BPF의 설계 및 구현)

  • Kang, Sang-Gee;Choi, Heung-Taek;Lee, Jae-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1255-1260
    • /
    • 2009
  • Microstrip interdigital filter is designed with the width and length of a resonator, the gap distance between resonators and the location of a tap. When designing filters, it is a benefit to design with few design parameters comparing to many design parameters. In this paper we design and implement two microstrip interdigital filters operating in the UWB(Ultra Wide-Band) frequency band, one using a fixed width of a resonator and the other using a different width of resonators. The test results of the implemented filters show that the low-band high filter with a fixed width has the insertion loss of 1.49dB, -10dB band width of 720MHz, -35.7dBattenuation at 4.8GHzand below -13dB of S11. The filter with a different width of resonators has the insertion loss of 1.6dB, -10dBbandwidth of 1.63GHz and below-8dBof S11.

Embedded Combline Band-Pass Filter using LTCC Technology (LTCC 기술을 이용한 집적형 컴라인 대역 통과 여파기)

  • 임옥근;김용준
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • A compact embedded tapped-line combline filter with interdigital capacitors using low temperature co-fired ceramic (LTCC) technology for wireless application is proposed. Also, in-situ measurement using T-pattern microstrip resonator was performed to acquire exact knowledge of electrical properties of the LTCC substrate. The proposed filter makes it possible to realize a relatively small size, 2.7mm${\times}$2.03mm. by employing interdigital and combline structure. It shows 1.8 ㏈ insertion loss, 37.6㏈ return loss, and 280 MHz bandwidth at the center frequency of 5.09 GHz. Its small size and simple structure make it a good candidate as an integrated filter for various LTCC substrates.

  • PDF

Miniaturization of Embedded Bandpass Filter in LTCC Multilayer Substrate for WiMAX Applications

  • Cho, Youngseek;Choi, Seyeong
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • A compact radio frequency (RF) bandpass filter (BPF) in low temperature co-fired ceramic (LTCC) is suggested for WiMAX applications. The center frequency ($f_0$) of the BPF is 5.5 GHz and its pass band or 3-dB bandwidth is 700 MHz to cover all the three major bands, low and middle unlicensed national information infrastructure (U-NII; 5.15-5.35 GHz), World Radiocommunication Conference (5.47-5.725 GHz), and upper U-NII/industrial, scientific, and medical (ISM) (5.725-5.85 GHz), for the WiMAX frequency band. A lumped circuit element design-the 5th order capacitively coupled Chebyshev BPF topology-is adopted. In order to design a compact RF BPF, a very thin ($43.18{\mu}m$) ceramic layer is used in LTCC substrate. An interdigital BPF is also designed in silicon substrate to compare the size and performance of the lumped circuit element BPF. Due to the high relative dielectric constant (${\varepsilon}_r$ = 11.9) of the silicon substrate, the quarter-wavelength resonator of the interdigital BPF can be reduced. In comparison to the 5th order interdigital BPF at $f_0$ = 5.5 GHz, the lumped element design is 24% smaller in volume and has 17 and 7 dB better attenuation characteristics at $f_0{\pm}0.75$ GHz.

The Analysis of Interdigital Bandpass Filter or K-band (Via-Hole 접지를 고려한 K-대역 인터디지트 대역통과 필터분석)

  • 심재우;이영철;김영진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.825-834
    • /
    • 2000
  • In this paper, we have designed a bandpass filter with via-holes ground on K-band To pass only the 25 ~30% of the bandwidth at the center frequency of 19.6GHz, we have designed a six-order interdigital bandpass filter using microstrip lines. Simulation results of optimization according to via-holes size and numbers of interdigit bandpass filter shows a excellent agreement with theoretical values on passband frequency. Experimental results of BP filters show that mesaured center frequency is 19.150Hz, insertion loss, -4.1dB, reflection coefficient, -16.7dB. It proved that the vis-holes ground size and numbers must be considered to design the bandpass filter.

  • PDF

Comparison of Band Pass Filter Performance Using Liquid Crystal Polymer Substrate in Millimeter-Wave Band (밀리미터파 대역에서 액정 폴리머(Liquid Crystal Polymer) 기판을 이용한 대역통과필터 비교)

  • Oh, Yeonjeong;Lee, Jaeyoung;Choi, Sehwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2021
  • In this paper, two types of BPF(Band Pass Filter) which are hair-pin and interdigital have been designed for millimeter-wave application using two types of material which are LCP(Liquid Crystal Polymer) and PTFE(Polytetrafluoroethylene) and also, their performances such as bandwidth, insertion loss, and in-band flatness are compared. The proposed BPF are designed as third-order filters, and their pass band is from 26.5 GHz to 27.3 GHz. Interdigital BPF using PTFE substrate has most wide -3 dB S21 bandwidth of 7.8 GHz and hair-pin BPF using LCP substrate has most narrow -3 dB S21 bandwidth among the proposed four BPF. For in-band insertion loss, hair-pin BPF using PTFE substrate achieves low insertion loss better than -0.667 dB, and hair-pin BPF using LCP substrate exhibits relatively high insertion loss among the proposed four BPF better than -0.937 dB. However, the maximum difference in insertion loss performance among the proposed four BPF is 0.27 dB, which is too small to negligible. For in-band flatness, interdigital BPF using PTFE substrate shows greatest performance of 0.017 dB, and hair-pin BPF using LCP substrate exhibits the lowest performance of 0.07 dB. There are tiny difference in in-band flatness performance of 0.053 dB. As a results, it is considered that the BPF using LCP substrate can derive the performances similar to that of the BPF using PTFE substrate in Millimeter-wave band.

The Analysis of Interdigital Bandpass Filter for K-band (K대역용 인터디지털 대역통과 필터분석)

  • 심재우;이영철;김영진
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.186-189
    • /
    • 2000
  • In this paper, we have designed a bandpass filter to apply the downconverter of the K-band Mu-hung-hwa satellite. To pass only the 25-30% of the bandwidth at the center frequency of 19.6GHz, we have designed a six-order interdigital bandpass filter using microstrip lines. Simulation result of optimization show that insertion loss is -0.275dB and reflection coefficient is -20.95dB at the passband frequency. measurement is determined center frequency, 19.150Hz, insertion loss, -4.1dB, input reflection coefficient. -l5dB and output reflection coefficient -l6dB.

  • PDF

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.

Design of an Offset Interdigital Filter Based on Multi-Port EM Simulated Y-Parameters (EM 시뮬레이션 기반 다중 포트 Y-파라미터를 이용한 변위된 인터디지털 여파기 설계)

  • Lee, Seok-Jeong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.694-704
    • /
    • 2011
  • In this paper, we present a design of a 5th order Chebyshev interdigital band-pass filter using inverter and susceptance slope parameter values obtained from EM simulated multi-port Y-parameters. The shifted length of the resonator is determined when the frequency of the transmission zero is separated far away from the center frequency. For the initial dimensions of the interdigital filter, the filter is decomposed into the individual resonators, and the dimensions are obtained using EM Simulation of the decomposed resonators. However, the interdigital filter with the dimensions determined from the EM simulation of the decomposed resonators shows slightly distorted response from the desired frequency response due to the coupling between non-adjacent resonators. To obtain a EM simulation dataset, EM simulation for this filter is carried out by parameter sweep with constant ratio for the initial values. In this dataset, it is determined the final values for the filter by optimization. The fabricated filter by PCB shows an upper-shift of center frequency of about 70 MHz, which was caused by permittivity changed and tolerance of fabrication.