• Title/Summary/Keyword: Interdecadal variation

Search Result 7, Processing Time 0.021 seconds

Interdecadal Variation of Wintertime Blocking Frequency over the Siberia

  • Lee, Hyun-Soo;Jhun, Jong-Ghap;Kang, In-Sik;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.556-562
    • /
    • 2007
  • The interdecadal variation of wintertime blocking frequency over the Siberia ($60^{\circ}E-140^{\circ}E$) is examined using the ECMWF/NCEP-NCAR re-analysis data for the period 1958-2006. The wintertime blocking frequency over the Siberia significantly decreased for the period 1986-2006, compared to the period 1958-1985, which is mainly due to the anomalous circulation of 500-hPa geopotential height field. During the period 1986-2006, there was enhancement in both the anomalous cyclonic flow over the western Siberia and the anomalous anticyclonic flow over the east Asia. These anomalous circulation patterns, which might be associated with changes in surface temperatures over the Asian continent, are suspected to playa possibly important role as an obstacle to the formation of blocking flow over the Siberia.

A multi-scale analysis of the interdecadal change in the Madden-Julian Oscillation (MJO의 다중스케일 분석을 통한 수십년 변동성)

  • Lee, Sang-Heon;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2011
  • A new multi-timescale analysis method, Ensemble Empirical Mode Decomposition (EEMD), is used to diagnose the variation of the MJO activity determined by 850hPa and 200hPa zonal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data for the 56-yr period from 1950 to 2005. The results show that MJO activity can be decomposed into 9 quasi-periodic oscillations and a trend. With each level of contribution of the quasi-periodic oscillation discussed, the bi-seasonal oscillation, the interannual oscillation and the trend of the MJO activity are the most prominent features. The trend increases almost linearly, so that prior to around 1978 the activity of the MJO is lower than that during the latter part. This may be related to the tropical sea surface temperature(SST). It is speculated that the interdecadal change in the MJO activity appeared in around 1978 is related to the warmer SST in the equatorial warm pool, especially over the Indian Ocean.

A Change of Large-scale Circulations in the Indian Ocean and Asia Since 1976/77 and Its Impact on the Rising Surface Temperature in Siberia

  • Lim, Han-Cheol;Jhun, Jong-Ghap;Kwon, Won-Tae;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.660-670
    • /
    • 2009
  • This study examines the changes of an interdecadal circulation over the Asian continent to find cause of the surface warming in Siberia from 1958 to 2004. According to our study, there is a coherency between a long-term change of sea surface temperature in the Indian Ocean and the rapid increase of air temperature in Siberia since 1976/1977. In this study, we suggest that mean wind field changes induced by the positive sea surface temperature anomalies of the Indian Ocean since 1976/1977 are caused of inter-decadal variations in a large-scale circulation over the Asian continent. It also indicates that the inter-decadal circulation over the Asian continent is accompanied with warm southerly winds near surface, which have significantly contributed to the increase of surface temperature in Siberia. These southerly winds have been one of the most dominant interdecadal variations over the Asian continent since 1976/1977. In addition, we investigated the long-term trend mode of 850 hPa geopotential height data over the Asian continent from the Empirical Orthogonal Function (EOF) analysis for 1958-2004. In result, we found that there was an anomalously high pressure pattern over the Asian continent, it is called 'the Asian High mode'. It is thus suggested that the Asian High mode is another response of interdecadal changes of large-scale circulations over the Asian continent.

Characteristics of Tropical Cyclogenesis over the Western North Pacific in 2007 (2007년 북서태평양에서의 열대저기압 발생 특징)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung;Park, Jong-Kil;Lee, Ji-Sun
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.539-550
    • /
    • 2009
  • This study found that tropical cyclones (TCs) formed for fall in 2007 over the western North Pacific were distributed in high-latitudes comparing to 56-year (1951-2006) climatological mean. The frequency and latitude of TC genesis became higher than 56-year climatological mean from September onward in 2007 and all the TCs that formed to the north of 20$^{\circ}$N was also distributed after September in 2007. These characteristics of TC genesis for fall in 2007 could be confirmed through analyzing various variables, such as a large-scale atmospheric circulation, outgoing longwave radiation (OLR), vertical zonal wind shear, and sea surface temperature (SST). On the other hand, a frequency of the TC that occurred to the north of 200N showed a clear interdecadal variation and its decreasing trend was distinctive in recent years. Its intensity was also weaker that TCs that did to the south of 20$^{\circ}$N. However, a latitude of TC genesis showed an increasing trend until recent years, whose variation was consistent with trend that through a SST analysis, warm SST went north in recent years.

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon (인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성)

  • Kim, Won-Mo;Jhun, Jong-Ghap;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2008
  • This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

Interdecadal Variation of Tropical Cyclone Genesis Frequency over the Western North Pacific (북서태평양에서 열대 저기압 발생빈도의 십년간 변동 특성)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Park, Jong-Kil
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This study has found that there is a reverse phase with interdecadal variation in temporal variations of tropical cyclone (TC) genesis frequency (TCGF) between Northwest sector and Southeast sector, based on climatological mean tropical cyclone genesis location over the western North Pacific. The TCGF in the Northwest sector has been increased since the mid 1980s (1986-2005), while TCGF in the Southeast sector was higher until the early 1970s (1951-1970). The analysis of a difference between 1986-2005 and 1951-1970 showed results as follows: i) Through the analysis of vertical wind shear (VWS) and sea surface temperature (SST), less VWS and higher SST in the former (latter) period was located in the Northwest (Southeast) sector. ii) In the analysis of TC passage frequency (TCPF), TCs occurred in the Northwest sector frequently passed from east sea of the Philippines, through East China Sea, to Korea and Japan in the latter period, while TCs in the former period frequently has a lot of influences on South China Sea (SCS). In the case of TCs occurred in the Southeast sector, TCs in the west (east), based on $150^{\circ}E$ had a high passage frequency in the latter (former) period. In particular, TCs during the latter period frequently moved toward from the east sea of the Philippines to SCS and southern China. iii) This difference of TCPF between the two periods was characterized by 500 hPa anomalous pressure pattern. Particularly, anomalous cyclonic circulation strengthened over the East Asian continent caused anomalous southerlies along the East Asian coast line from the east sea of the Philippines to be predominate. These anomalous winds served as steering flows that TC can easily move toward same regions.

A Study of Relationships between the Sea Surface Temperatures and Rainfall in Korea (해수면온도와 우리나라 강우량과의 상관성 분석)

  • Moon Young-Il;Kwon Hyun-Han;Kim Dong-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.995-1008
    • /
    • 2005
  • In this study, the principal components of rainfall in Korea are extracted by a method which consists of the independent component analysis combined with the wavelet transform, to examine the spatial correlation between seasonal rainfalls and global sea surface temperatures (SSTs). The 2-8 year band retains a strong wavelet power spectrum and the low frequency characteristics are shown by the wavelet analysis. The independent component analysis is performed by using the Scale Average Wavelet Power(SAWP) that is estimated by wavelet analysis. Interannual-interdecadal variation is the dominant variation, and an increasing trend is observed in the spring and summer seasons. The relationships between principal components of rainfall in the spring/summer seasons and SSTs existed in Indian and Pacific Oceans. Particularly, the SST zones, which represent a statistically significant correlation are located in the Philippine offshore and Australia offshore. Also, the three month leading SSTs in the same region we strongly correlated with the rainfall. Hence, these results propose a promising possibility of seasonal rainfall prediction by SST predictors.