• Title/Summary/Keyword: Interconnectivity

Search Result 54, Processing Time 0.024 seconds

Development of Biomimetic Scaffold for Tissue Engineering (조직공학을 위한 생체모사용 스캐폴드 개발)

  • Park, Su-A;Lee, Jun-Hee;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

Analysis of the Linkage Effect by Component Technology in Low Impact Development Facilities (저영향개발 시설의 요소기술별 연계 효과 분석)

  • Baek, Jongseok;Lee, Sangjin;Shin, Hyunsuk;Kim, Jaemoon;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Urbanization has led to extreme changes in land use on urban watersheds. Most cities are becoming residential, commercial and industrial areas, making infiltration and storage of rainfall less favorable. The demand for LID (Low Impact Development) technology is increasing in order to mitigate this water cycle distortion and return to existing hydrological conditions. The LID technique is effective in reducing runoff by permeating the urban impervious area. However, considering the limit of the installation area and the financial requirement of the installation, there is not much research on the linkage of each LID component technology for optimum efficiency according to the appropriate scale. In this study, the effects of the LID facilities applied to the target site were simulated using the SWMM model, suggesting the optimal linkage method considering interconnectivity, and applying the effects as an existing installation of individual facilities. The water balance at the time of application of the LID technology, short-term and long-term rainfall event were compared. Also, the individual application and the linkage application were compared with each other. If each component technology has sufficient processing size, then linkage application is more effective than individual application.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

An Intelligent Game Theoretic Model With Machine Learning For Online Cybersecurity Risk Management

  • Alharbi, Talal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.390-399
    • /
    • 2022
  • Cyber security and resilience are phrases that describe safeguards of ICTs (information and communication technologies) from cyber-attacks or mitigations of cyber event impacts. The sole purpose of Risk models are detections, analyses, and handling by considering all relevant perceptions of risks. The current research effort has resulted in the development of a new paradigm for safeguarding services offered online which can be utilized by both service providers and users. customers. However, rather of relying on detailed studies, this approach emphasizes task selection and execution that leads to successful risk treatment outcomes. Modelling intelligent CSGs (Cyber Security Games) using MLTs (machine learning techniques) was the focus of this research. By limiting mission risk, CSGs maximize ability of systems to operate unhindered in cyber environments. The suggested framework's main components are the Threat and Risk models. These models are tailored to meet the special characteristics of online services as well as the cyberspace environment. A risk management procedure is included in the framework. Risk scores are computed by combining probabilities of successful attacks with findings of impact models that predict cyber catastrophe consequences. To assess successful attacks, models emulating defense against threats can be used in topologies. CSGs consider widespread interconnectivity of cyber systems which forces defending all multi-step attack paths. In contrast, attackers just need one of the paths to succeed. CSGs are game-theoretic methods for identifying defense measures and reducing risks for systems and probe for maximum cyber risks using game formulations (MiniMax). To detect the impacts, the attacker player creates an attack tree for each state of the game using a modified Extreme Gradient Boosting Decision Tree (that sees numerous compromises ahead). Based on the findings, the proposed model has a high level of security for the web sources used in the experiment.

The Anatomical Identification-key of Ephedrae Herba and its adulterant (마황(麻黃)과 그 위품의 내부형태감별)

  • Lee, Guemsan
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.25-32
    • /
    • 2019
  • Objectives : Ephedra regeliana, although similar to the other E. sinica, E. intermedia, and E. equisetina, is not authorized by The Korean Pharmacopoeia and yet has also been imported under the name of 'Ma-Hwang'. The aim of this study was to perform a comparative anatomical evaluation of Ephedrae Sinicae Herba (ESH), Ephedrae Intermedicae Herba (EIH), Ephedrae Equisetinae Herba (EEH) and Ephedrae Regelianae Herba (ERH). Methods : Permanent paraffin-embedded specimens were produced using the paraffin-tertiary butyl alcohol (TBA) method, to visualize their anatomical features via light microscopy. Results : ESH and ERH transverse sections were in the shape of a long ellipse, while those of EIH and EEH were in the shape of a circle. These anatomical characteristics substantiated the results of external morphological examination. The sections revealed that each of the four samples showed significantly different cortexes. The cortex of ESH was wider than two thirds of the section, unlike that of the other samples which was relatively narrow. The xylems of ERH, EIH, and EEH demonstrated interconnectivity with other adjacent xylems, contrary to those in ESH. Therefore, the characteristic development of the xylems over time was used to distinguish ERH from the other. Furthermore, parenchymal morphology in the central cylinder was also a good criterion to differentiate between EIH and EEH, since EIH demonstrated parenchymal cells that were shaped like a rounded-triangle, whereas EEH parenchymal cells were chrysanthemum-shaped. Conclusions : The identification-keys established in this study would facilitate the accurate identification of microscopic features of the four varieties of 'Ma-Hwang'.

Anatomy of Sentiment Analysis of Tweets Using Machine Learning Approach

  • Misbah Iram;Saif Ur Rehman;Shafaq Shahid;Sayeda Ambreen Mehmood
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.97-106
    • /
    • 2023
  • Sentiment analysis using social network platforms such as Twitter has achieved tremendous results. Twitter is an online social networking site that contains a rich amount of data. The platform is known as an information channel corresponding to different sites and categories. Tweets are most often publicly accessible with very few limitations and security options available. Twitter also has powerful tools to enhance the utility of Twitter and a powerful search system to make publicly accessible the recently posted tweets by keyword. As popular social media, Twitter has the potential for interconnectivity of information, reviews, updates, and all of which is important to engage the targeted population. In this work, numerous methods that perform a classification of tweet sentiment in Twitter is discussed. There has been a lot of work in the field of sentiment analysis of Twitter data. This study provides a comprehensive analysis of the most standard and widely applicable techniques for opinion mining that are based on machine learning and lexicon-based along with their metrics. The proposed work is helpful to analyze the information in the tweets where opinions are highly unstructured, heterogeneous, and polarized positive, negative or neutral. In order to validate the performance of the proposed framework, an extensive series of experiments has been performed on the real world twitter dataset that alter to show the effectiveness of the proposed framework. This research effort also highlighted the recent challenges in the field of sentiment analysis along with the future scope of the proposed work.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

A Study on the Characteristics of Knitwear Fashion Design: With a focus on Missoni, Sonia Rykiel, Azzedine Alaia

  • Chun, Hei Jung;Park, Jae Min
    • International Journal of Costume and Fashion
    • /
    • v.13 no.1
    • /
    • pp.23-34
    • /
    • 2013
  • The purpose of this study is to better understand the development and characteristics of knitwear fashion design by examining the transformation process of the modern knits. The subjects of the study are Missoni, Sonia Rykiel, and Azzedine Alaia, designers who are world-renowned knit designers, and the expressive techniques in their designs will be evaluated. The study also intends to analyze the aesthetic value of each designer's style through their product's silhouette, colors, and knitting techniques. On the basis of the analysis, we hope to research the factors in the designing process that will allow knits, which were made for practical purposes, to be valued as a luxury fashion item, and with the results, show the potential for knits in expanding its domain in fashion to become a more luxurious, creative fashion item. The characteristic comparison of the designers is as follows: First, in the case of colors, Missoni shows its distinct identity through a balance of splashy colors as well as nature-inspired color composition and balance. And, only with color use, is also able to express perspective, form composition, and rhythm. Sonia Rykiel designs are composed of black backgrounds with strong primary colors that are contrasted with one-point or stripes to express a light, urban image. Alaia emphasizes femininity by the use of black and white colors, which show modernity, in combination with neutral skin-toned colors, such as beige and gray. So, in other words, Missoni and Sonia Rykiel mixed colors for visual interconnectivity, while Alaia expressed femininity through the use of an achromatic color. Second, in the case of knitting techniques, Missoni uses the jacquard technique to make complex patterns that show balance of colors and patterns such as zigzag, stripe, geometries, and titan check, which are geometric, abstract, and symmetric. Sonia Rykiel who uses stripes as her trademark, most often utilizes the intarsia technique, which is expressed through one-point. Alaia combines diverse techniques, such as the Skashi weaving, by using computerized knitting. Third, as for silhouettes, Missoni eliminated exaggerated details in order to emphasize the flashy colors and delicate patterns and weavings of its designs, and this resulted in simplistic and relaxed silhouettes. Sonia Rykiel took advantage of the elasticity that the knit offers to get a tight silhouette, and in turn, emphasized the female sensuality. Alaia used curvilinear cuts that emphasized the womanly curves and gained an image considered soft and feminine.

Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible

  • Sosakul, Teerapan;Tuchpramuk, Pongsatorn;Suvannapruk, Waraporn;Srion, Autcharaporn;Rungroungdouyboon, Bunyong;Suwanprateeb, Jintamai
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.2
    • /
    • pp.106-120
    • /
    • 2020
  • Purpose: A new form of porous polyethylene, characterized by higher porosity and pore interconnectivity, was developed for use as a tissue-integrated implant. This study evaluated the effectiveness of porous polyethylene blocks used as an onlay bone graft in rabbit mandible in terms of tissue reaction, bone ingrowth, fibrovascularization, and graft-bone interfacial integrity. Methods: Twelve New Zealand white rabbits were randomized into 3 treatment groups according to the study period (4, 12, or 24 weeks). Cylindrical specimens measuring 5 mm in diameter and 4.5 mm in thickness were placed directly on the body of the mandible without bone bed decortication, fixed in place with a titanium screw, and covered with a collagen membrane. Histologic and histomorphometric analyses were done using hematoxylin and eosin-stained bone slices. Interfacial shear strength was tested to quantify graft-bone interfacial integrity. Results: The porous polyethylene graft was observed to integrate with the mandibular bone and exhibited tissue-bridge connections. At all postoperative time points, it was noted that the host tissues had grown deep into the pores of the porous polyethylene in the direction from the interface to the center of the graft. Both fibrovascular tissue and bone were found within the pores, but most bone ingrowth was observed at the graft-mandibular bone interface. Bone ingrowth depth and interfacial shear strength were in the range of 2.76-3.89 mm and 1.11-1.43 MPa, respectively. No significant differences among post-implantation time points were found for tissue ingrowth percentage and interfacial shear strength (P>0.05). Conclusions: Within the limits of the study, the present study revealed that the new porous polyethylene did not provoke any adverse systemic reactions. The material promoted fibrovascularization and displayed osteoconductive and osteogenic properties within and outside the contact interface. Stable interfacial integration between the graft and bone also took place.

STP Development in the Context of Smart City

  • Brochler, Raimund;Seifert, Mathias
    • World Technopolis Review
    • /
    • v.8 no.2
    • /
    • pp.74-81
    • /
    • 2019
  • Cities will soon host two third of the population worldwide, and already today 80% of the world energy is used in the 20 largest cities. Urban areas create 80% of the greenhouse gas emission, so we should take care that urban areas are smart and sustainable as implementations have especially here the greatest impact. Smart Cities (SC) or Smart Sustainable Cities (SSC) are the actual concepts that describe methodologies how cities can handle the high density of citizens, efficiency of energy use, better quality of life indicators, high attractiveness for foreign investments, high attractiveness for people from abroad and many other critical improvements in a shifting environment. But if we talk about Entrepreneurship Ecosystem and Innovation, we do not see a lot of literature covering this topic within those SC/SSC concepts. It seems that 'Smart' implies that all is embedded, or isn't it properly covered as brick stone of SC/SSC concepts, as they are handled in another 'responsibility silo', meaning that the policy implementation of a Science and Technology Park (STP) is handled in another governing body than SC/SSC developments. If this is true, we will obviously miss a lot of synergy effects and economies of scale effects. Effects that we could have in case we stop the siloed approaches of STPs by following a more holistic concept of a Smart Sustainable City, covering also a continuous flow of innovation into the city, without necessarily always depend on large corporate SSC solutions. We try to argue that every SSC should integrate SP/STP concepts or better their features and services into their methodology. The very limited interconnectivity between these concepts within the governance models limits opportunities and performance in both systems. Redesigning the architecture of the governance models and accepting that we have to design a system-of-systems would support the possible technology flow for smart city technologies, it could support testbed functionalities and the public-private partnership approach with embedded business models. The challenge is of course in complex governance and integration, as we often face siloed approaches. But real SSC are smart as they are connecting all those unconnected siloes of stakeholders and technologies that are not yet interoperable. We should not necessarily follow anymore old greenfield approaches neither in SSCs nor in SP and STP concepts from the '80s that don't fit anymore, being replaced by holistic sustainability concepts that we have to implement in any new or revised SSC concepts. There are new demands for each SP/STP being in or close to an SC/SCC as they have a continuous demand for feeding the technology base and the application layer and should also act as testbeds. In our understanding, a big part of STP inputs and outputs are still needed, but in a revised and extended format. We know that most of the SC/STP studies claim the impact is still far from understood and often debated, therefore we must transform the concepts where SC/STPs are not own 'cities', but where they act as technology source and testbed for industry and new SSC business models, being part of the SC/STP concept and governance from the beginning.