• Title/Summary/Keyword: Intercellular membrane complex

Search Result 16, Processing Time 0.031 seconds

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

Low Temperature Dyeing Process by Intercellular diffusion through Cell Membrane Complex Modification of Wool. - Technology based on CSIRO and ICI (양모의 저온 염색 소개 - Sirolan LTD Process from ICI)

  • 윤일남
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2001.11a
    • /
    • pp.3-11
    • /
    • 2001
  • Fundamental studies at the CSIRO division of Wool technology and ICI on the diffusion of dyes into wool〔1,2〕have let to development of a new approach to wool dyeing. In this method, the cell membrane complex of wool is modified before dyeing by treatment under mildly alkaline conditions with a special chemicals. Wool pretreated with ethoxylated quaternary ammonium salt has an increased rate of dyebath exhaustion and dye penetration early in the dyeing cycle. This enables the treated material to be dyed below the boil for a similar time to the conventional cycle. This technique can be used on untreated and shrinkresist-treated wool and wool/nylon blends. In addition to good macro-levelness and excellent coverage of tippiness, the low temperature dyeing process give higher exhaustion levels of dyestuffs and insect-resist agent and hence cleaner effluent liquors, compared with conventional dyeing process. Low Temperature Dyeing process cause significantly less fiber damage than conventional way. The reduction in damage is reflected in improved processing performance of the dyed wool.

  • PDF

Targeting Cell-Cell and Cell-Matrix Interactions and Its Therapeutic Applications

  • Kim, In-San
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.100-101
    • /
    • 2003
  • Cell-cell and cell-matrix interaction is clearly required for metazoans not only to hold their cells together but also to conduct more sophisticated biological processes. Each cell has adhesion molecules on its cell membrane to link extracellular matrix and adjacent cells to the intracellular cytoskeleton, and also to transduce signals. In complex metazoans, information is transmitted from one cell to another by mechanisms such as direct intercellular communication, soluble signal molecules among distant cells, and local cellular environments formed by highly specialized extracellular matrix. (omitted)

  • PDF

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Na/K-ATPase beta1-subunit associates with neuronal growth regulator 1 (NEGR1) to participate in intercellular interactions

  • Cheon, Yeongmi;Yoo, Ara;Seo, Hyunseok;Yun, Seo-Young;Lee, Hyeonhee;Lim, Heeji;Kim, Youngho;Che, Lihua;Lee, Soojin
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.164-169
    • /
    • 2021
  • Neuronal growth regulator 1 (NEGR1) is a GPI-anchored membrane protein that is involved in neural cell adhesion and communication. Multiple genome wide association studies have found that NEGR1 is a generic risk factor for multiple human diseases, including obesity, autism, and depression. Recently, we reported that Negr1-/- mice showed a highly increased fat mass and affective behavior. In the present study, we identified Na/K-ATPase, beta1-subunit (ATP1B1) as an NEGR1 binding partner by yeast two-hybrid screening. NEGR1 and ATP1B1 were found to form a relatively stable complex in cells, at least partially co-localizing in membrane lipid rafts. We found that NEGR1 binds with ATP1B1 at its C-terminus, away from the binding site for the alpha subunit, and may contribute to intercellular interactions. Collectively, we report ATP1B1 as a novel NEGR1-interacting protein, which may help deciphering molecular networks underlying NEGR1-associated human diseases.

Morphological Change of Men's Hair Shaft by Weathering (풍화작용에 의한 정상모발의 형태학적 변화)

  • Hong, Wan-Sung;Chang, Byung-Soo;Lim, Do-Seon;Park, Sang-Ock;Yoe, Sung-Moon
    • Applied Microscopy
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • The morphological changes in normal and weathering hair shafts of the human scalp were investigated by using the transmission and scanning electron microscopes. The hair shaft composed of cuticular layer, cortex and medula. The surface of normal hairs are smooth and covered by imbricated cuticular scales. The cuticular layer consists of five to seven cuticle cells. These cells, which are flat and thin, measuring about $100{\mu}m$ long and $0.4{\mu}m$ thick, appears intercellular membrane complex in diameter 25 nm. The cortex composed of melanin granules and cornified cells, which multicomponent concentric microfibrils in diameter about 8 nm give rise to macrofibrils in diameter $0.5{\mu}m$ to $0.8{\mu}m$ encased in limiting membrane. The melanin granules are spherical shaped about $0.5{\mu}m$ in size and scattered between macrofibrils. The medulla in the normal hairs are $16{\mu}m$ in diameter centrally region of cortex. Normal hair shafts undergo progressive degenerative changes due to a variety of environmental insults. In the initial weathering process of hair, the cuticular scales became irregularly raised and broken, and then cuticle cells formed cytoplasmic vacuolation, following dissociated intercellular membrane complex, ultimately entirely lost and nuded cortex. Occasionally, transverse fissures were seen at hair shafts indicating that the hairs were deteriorated. Complete removal of the cuticular layer in the heavily damaged cortex portions appeared splitting of the cortical cell into its macrofibrils and scattering of melanin granules.

  • PDF

Studies on the Preservative Condition and the Ultrastructure of Hair of Newly Found Sixteenth Century Mummy in Paju (파주에서 발견된 16세기 미라 머리카락의 미세구조과 보존상태에 관한 연구)

  • Lee, Gwi-Yeong;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.24-31
    • /
    • 2005
  • The preservative condition and ultrastructure on the mummified hair collected from newly found female mummy in Paju, were investigated by using scanning and transmission electron microscopes. The female mummy was found in september, 2002 during the traditional reburial process for the buried ones. The hair of 16th century mummy showed very intact appearances during observation with electron microscope. And the structures of the cortex, medulla and cuticle were well preserved. The cuticle layer was easily discernable, which are composed of six to seven cuticular cells. Each cuticular cells surrounded and thus seperated from its neighbors by intercellular membrane complex. In the cortex, many macrofibrils and some melanin granules between them were observed. We observed well preserved rod form macrofibrils running parallel along the direction of hair shaft. Especially, melanin granules were aggregated in the cortex which was adjacent to the cuticlu layer. As to the cause for the well-preservation of 440 year old hair sample, the presence of surface coat on the hair, which are composed of various materials. As calcium was included in the surface coat in Electron Dispersive X-ray Spectroscopy (EDS), the hardening process of the surface coat by calcium might inhibit the water or microorganism infiltration into the hair.

Fine Structure of Damaged Hair Shaft by Daily Treatment of Heat for a Beautiful Face (미용을 위한 일상적인 열처리에 의해서 손상된 모발의 미세구조)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The ultrastructure of damaged hair shaft from blow-drying at typical temperature $40{\sim}170^{\circ}C$ for daily beautiful face have been investigated by using transmission electron microscope and scanning electron microscope. When we used to hair dryer for a long time in our everyday life, the following morphological alternations were found in hair. First, the partial of scales in outer cuticle were detached simultaneously with separation of intercellular membrane complex of cuticle cells. Then hair broke cuticle off and exposed to cortex. Secondly, the cortical cell in the cortex was fissured into its macrofibril. The melanin granules were scattered between macrofibrils. As a result, I confirmed that blow-drying removed the hair's bonded water and made hard on hair which lost elasticity. After all, hair showed irregular, rough surface and vanished its luster.

Ultrastructure of the Hindgut Epithelial Cells in the Cockroach, Blattella germanica L. (바퀴의 後腸 上皮細胞들에 대한 微細構造)

  • Yu, Chai Hyeock
    • The Korean Journal of Zoology
    • /
    • v.28 no.1
    • /
    • pp.44-59
    • /
    • 1985
  • The epithelium of the hindgut in the german cockroach, Blattella germanica Linne, was observed with electron microscope. The epithelium of the ileum, which is located at the anterior hindgut, is composed of a single layer of squamous and cuboidal cells. The liminal surface of the epithelium is lined with the cuticular intima. The epithelial cells contain cell organelles expected to be found in absorptive cells, and some epithelial cells have numerous lamelated crystals, the "spherites". The rectal epithelium of posterior hindgut is composed of rectal pads which are covered with cuticular intima on the luminal side. The rectal pads are composed of columnar absorptive cells and basal cells. The apical plasma membrane of columnar cell is made of microvilli, where mitochondria associated with some of the microvilli. The lateral plasma membrane is highly infolded and space is an uniform width of approximately 200$\\AA$. Well developed mitochondria are found closely associated with the infoldings and this is referred to as the "mitochondrial-scalariform complex". A septate junction is found near the apical zone between the columnar absorptive cells, whereas many desmosomes and intercellular spaces are formed between the columnar cells. Basal cells are bowl-shaped where the convex surface is inlaid into the basal surface of the columnar cells while the concave surface faces the basal lamina. The cytoplasm of the basal cell is electron dense and contains well developed cell organelles. The basal sheath is located between the basal membrane and basal lamina, providing barrier between the epithelium and the hemolymph. The epithelium is surrounded by the subepithelial space and muscles. The subepithelial space, which is composed of fibrous connective tissue, is innervated by many tracheoles and axons.

  • PDF

A Freeze-fracture Study on the Odontoblast of Dental Pulp in the Rat Incisor (흰쥐 절치치수의 Odontoblast에 관한 Freeze-Fracture 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The purpose of this study was to investigate the morphology and intercellular junctions of the odontoblast of dental pulp in the rat incisor by means of the freeze fracture electron microscopy. Twenty male Sprague-Dawley rats weighing $150{\sim}200g$ were used. After being anesthetized by an intraperitoneal injection of 0.5 ml sodium pentobarbital per kg in body weight(60 mg/ml) the animals were perfused with 2.5% glutaraldehyde-2% paraformaldehyde fixative in 0.1 M cacodylate buffer, pH 7.2 through the ascending aorta for one hour. The incisors were carefully extracted from the jaws and demineralized by suspending them in 0.1 M EDTA in 3% glutaraldehyde (pH 7.2) for two weeks. After demineralization, the specimens were obtained from the portion divided into five equal parts. For freeze-fracture replication, demineralized tissues were infiltrated for several hours with 10%, 25% glycerol in 0.1M cacodylate buffer as a cryoprotectant and then frozen in liquid Freon 22 and stored in liquid nitrogen. Fracturing and replication were done in Balzers BAF 400D high-vacuum freeze-fracture apparatus at $-120^{\circ}C$ under routine $5X10^{-7}$ Torr vacuum. The tissue was immediately replicated with platinum unidirectionally at $45^{\circ}$ angle and reinforced with carbon at $90^{\circ}$ angle unidirectionally or by using a rotary stage. The replication process was monitored by a quartz-crystal device. The replicas were immersed in 100% methanol overnight. The tissue was then digested from the replica by clorox (laundry bleach), placed into 5% EDTA, and washed repeatedly with distilled water. The replicas were picked up on 0.3% formvar-coated 75 mesh grids and examined in the JEOL 100B electron microscope. The results were as follows; 1. Both in thin sections and freeze-fracture replicas, three types of intercellular junctions were recognizable in the plasma membrane of odontoblast: gap junction, tight junction and desmosome-like junction. 2. The nuclear pores were evenly distributed over the nuclear envelope. The pore complex formed a ring about 70 nm in diameter. 3. Gap junctions were found between odontoblasts as well as odontoblasts and neighbouring pulp cells (fibroblast, subodontoblastic cell process, nerve-like fibre). Gap junctions, which were round, ellipsoid and pear-shaped and 600 nm in diameter, were observed in the odontoblast. 4. Numerous round and ellipsoid gap junctions could be frequently seen on the plasma membranes in cell body and apical part of the odontoblasts. On the P face, the junctions were recognized as a cluster of closely packed particles, measuring about 9 nm in diameter, and on the E face, the junctions were recognized as a shallow grooves.

  • PDF