• Title/Summary/Keyword: Intercalations-complex

Search Result 17, Processing Time 0.022 seconds

Synthesis and Charactrization of Polycaprolactone Nanocomposites Reinforced with Montmorillonite

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.425-429
    • /
    • 2004
  • [DEACOOH]-Montmorillonite intercalations complex obtained from Na-Montmorillonite and 10-Carboxy-n-decyldimethylethylammonium bromide (organic cation) was reacted with the monomer ($\varepsilon$-caprolactone) to achieve the [DEACOOH]-$\varepsilon$-caprolactone-Montmorillonite intercalations complex. From this intercalations complex Montmorillonite/Polycaprolactone nanocomposites in which montmorillonite (inorganic polymer) is chemically linked with the polycaprolactone (organic polymer) were formed at 240$^{\circ}C$ by three different methods such as in stoichiometric amounts between monomer and organic cation, in excess of only the monomer and in excess of both organic cation and monomer. The products obtained after polymerization were analyzed with X-ray diffractometer and TEM.

A Study on the Synthesis of Organophilic [TEACOOH]-Montmorillonite Intercalations Complex and its Swelling Properties

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.427-432
    • /
    • 2002
  • In this research an organic cation, [TEACOOH] Br, with a long alkyl chain was synthesized which will replace the metal ion between the layers of Na-Montmorillonite and an organophilic [TEACOOH]-Montmorillonite intercalations complex was formed by the cation exchange reaction between the Na-Montmorillonite and the synthesized [TEACOOH] Br. After drying of this intercalations complex in high vacuum we have tried to experiment on the probability whether it will form complexes with various swelling solutions such as dist. water, methano, ethanol, toluene, acetonitrile and propionitrile and the corresponding basal sp acings measured were $17.41{\AA}$, $31.90{AA}$, $34.42{AA}$, $30.52{AA}$ and $32.36{AA}$, respectively.

Formation of (TEACOOH)-Montmorillonite Intercalations Complex and Polycondensation between the Layers of the Complex ((TEACOOH)-Montmorillonite 층간화합물의 형성 및 층 내에서의 고분자화 반응)

  • Yun, Do-U;Jo, Seong-Jun
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.79-87
    • /
    • 2005
  • [TEACOOH]-Montmorillonite intercalations complex obtained from Na-Montmorillonite and 10-Carboxy-n-decyldimethylethylammonium bromide(organic cation) was reacted with the monomer($\varepsilon$-caprolactone) to achieve the [TEACOOH]-$\varepsilon$-caprolactone-Montmorillonite intercalations complex. From intercalations complex Montmorillonite/Polycaprolactone Nanocomposite in which montmorillonite(inorganic material) is chemically linked with the polycaprolactone(organic polymer) was formed at $220^{\circ}C$ for 48 h. The basal spacing for the sample obtained after polymerization, extraction with methanol and dried at $65^{\circ}C$ in high vacuum for 24 h was 50.7 $\AA$.

  • PDF

Formation of the Polycaprolactam between Layers of the [DEACOOH]-Montmorillonite Intercalations Complex and Its Characterization

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.207-212
    • /
    • 2006
  • [ ${\varepsilon}-caprolactam$ ] was polymerized in the layers of the [DEACOOH]-Montmorillonite intercalations complex at high temperatures ranging from 250% to 260% formed from Na-Montmorillonite and 10-Carboxy-n-decyldimethylethylammonium bromide to achieve [DEACOOH]-Polycaprolactam-Montmorillonite, in which an inorganic polymer (montmorillonite) is chemically combined with an organic polymer (polycaprolactam). The results of X-ray and IR analyses for the samples obtained after polymerization showed that the polymerization reaction was successfully accomplished. For the purpose of studying the polymeric reaction product more precisely, the polymerized product was separated from the silicate layers and analyzed with an X-ray diffractometer and an IR-spectrometer. A comparison of the results of the X-ray and IR analyses of the separated polymer and the polymer that was synthesized by the reaction of ${\varepsilon}-caprolactam$ solely with the organic cation without montmorillonite showed that the obtained both polymers are identical compounds.

A Study of Intercalations-complexes of Montmorillonite as Model-Systems (Model-system으로서의 몬트모릴로나이트의 층간화합물에 관한 연구 (I))

  • Jo, Seong-Jun;Kim, Jong-Ok
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • By cation-exchange-reaction long-chain organic cationic tensides can be intercalated in the montmorillonite layer space, and thus intercalations-complexes of montmorillonite with different properties of materials can be obtained. Such intercalations-complexes are finding strong technical appliances in many areas and are also used very often as model-systems for studying behaviors of materials. Therefore in this research intercalations-complexes of montmorillonite with organic cationic tensides ad model-systems were synthesized and their behabiors under various different conditions were studied.

  • PDF

A Study of Intercalations-complex of Montmorillonite as Model-System (II) (Model-System으로서의 몬트모릴로나이트의 층간화합물에 관한 연구(II))

  • 조성준;고영신;김인기;오원춘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.259-264
    • /
    • 1993
  • In this research, the organic tenside R11OSO3- with long alkyl-chain was synthesized, and the intercalationscomplexes fo montmorillonite were formed by the substitution of metallic cation in the montmorilonite by the synthesized organic tenside in following two methods, and the behaviors of the tenside R11OSO3- in the interlamellar space of montmorillonite were studied udner various conditions: 1) In order to protonize the sulfate group of R11OSO3-, the H3O-Montomorillonite, which acts as acid, was synthesized. And then, the organic tenside was intercalated in the interlamellar space of this H3O-Montomorillonite. And thus, the intercalations-complex of R11S-H3O-Montomorillonite was formed. The basal spacing obtained was about 33.84$\AA$. 2) The betaine compound R11OSO3- as a neutral molecule was direct intercalated in the interlamellar space of Na-Montmorillonite under water, and the intercalations-complexes of R11S-H2O-Montmorillonite was synthesized. In this case, the based spacing of bout 23.62$\AA$ was obtained.

  • PDF

A Study on the Synthesis of [RCOOH]-$\varepsilon$-Caprolactam-Montmorillonite Intercalations-complex and its Isothermal Decomposition in High Vacuum ([RCOOH]-$\varepsilon$-Caprolactam-Montmorillonite 층간화합물의 합성과 고진공상태하에서의 등온 분해에 관한 연구)

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.909-914
    • /
    • 1996
  • In this research [RCOOH]-$\varepsilon$-Caprolactam-Montmorillonite was synthesized by reaction between Na-Mont-morillonite (10-Carboxy-n-decyl)dimethylethylammonium (=RCCOH) ion and $\varepsilon$-Caprolactame-Motmorillonite ob-tained was 3.62$\AA$ After heat treatment of this intercalations complex at 37$^{\circ}C$ in high vacuum for 12 h 24 h, 40 h and 90 h the basal spacing was reduced to 35.8$\AA$, 34.2, 17.5 $\AA$ and 16.6$\AA$ respectively. The calculated amount of free $\varepsilon$-caprolactame included int he intercaltions complex and that of $\varepsilon$-caprolactame which is interca-lated into the interlayer space of montomorillonite and still remained after heat treatment are 4.6~4.9 and 0.5 molecules per unite cell of montmorillonite respectively.

  • PDF

A Study of Intercalations-complex of Montmorillonite as Model-system (V) (Model-System으로서의 몬트모릴로나이트의 층간화합물에 한 연구(V))

  • Sung-Jun Cho
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • In this research montmorillonite intercalations complexes as organophilic clay compounds which have very different properties as the starting clay mineral were synthesized by the substitution of metal ions which exist in the montmorillonite layers with the organic cations which have long alkyl chain by the cation exchange reaction. Thereafter the obtained products dried in high vacuum were treated with the various swelling liquids such as dist. water, methanol, acetone, ether and acetonitrile in order to know the swelling behaviour of the synthesized complexes. Especially for this research Korean and Turkish clays were selected to compare the intercalations complexes of both clays and their swelling behaviour.

  • PDF

Formation and Characterization of Chemically Combined [TEACOOH]-Montmorillonite/Polycaprolactone Nanocomposites

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.71-78
    • /
    • 2007
  • A [TEACOOH]-Montmorillonite intercalations complex obtained from Na-Montmorillonite and 10-Carboxy-n-triethylammonium bromide was used to attempt the polymerization of ${\varepsilon}$-caprolactone between the layer spaces of the intercalations complex to achieve Montmorillonite-Polycaprolactone nanocomposites in which the inorganic material (montmorillonite) is chemically combined with the organic polymer (polycaprolactone). The results of X-ray-, IR-, and TEM-analyses for samples obtained after polymerization showed that a polycondensation reaction was successfully produced. For a more precise investigation of the polymeric reaction products the polymerized products were separated from the silicate layers and analyzed with an IR-spectrometer. A comparison of the results of the IR-analyses of the separated polymer with that of the polymer synthesized by the reaction of ${\varepsilon}$-caprolactone with only the organic cation and without montmorillonite showed that the two obtained polymers are the same compound.

Polycondensation of ε-Caprolactone in the Layer Spaces of Organophilic Montmorillonite and Its Characterization

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.224-231
    • /
    • 2005
  • The polymerization of $\varepsilon-caprolactone$ in the layers of the [DEACOOH]-Montmorillonite intercalations complex was attempted using 10-Carboxy-n-decyldimethylethylammonium bromide and Na-Montmorillonite to achieve [DEACOOH]-Polycaprolactone-Montmorillonite in which the inorganic material (montmorillonite) and the organic material (polycaprolactone) are chemically linked each other. The results of X-ray- and IR-analysis for the samples obtained after polymerization showed that the polymerization reaction has been successfully accomplished. In order to study the polymeric reaction products more precisely we have separated the polymerized product from the silicate layers and analyzed it with X-ray diffractometer, IR-spectrometer and TEM. The comparison of the results of X-ray- and IR-analysis for the separated polymer with them for the polymer which was synthesized by the reaction of $\varepsilon-caprolactone$ only with the organic cation without montmorillonite showed that the obtained both polymers are the same compounds.