• Title/Summary/Keyword: Interbody fusion cage

Search Result 51, Processing Time 0.021 seconds

Biomechanical Efficacy of a Combined Flexible Cage with Pedicle Screws with Spring rods: A Finite Element Analysis (Spring rod를 사용한 척추경 나사못과 동반 시술된 Flexible cage의 생체역학적 효과)

  • Kim, Y.H.;Park, E.Y.;Kim, W.H.;Hwang, S.P.;Park, K.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Recently, flexible cages have been introduced in an attempt to absorb and reduce the abnormal load transfer along the anterior parts of the spine. They are designed to be used with the pedicle screw systems to allow some mobility at the index level while containing ROM at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the flexible cage when combined with pedicle screws with flexible rods. The post-operated models were constructed by modifying the L4-5 of a previously-validated 3-D FE model of the intact lumbar spine (L2-S1): (1) Type 1, flexible cage only; (2) Type 2, pedicle screws with flexible rods; (3) Type 3, interbody fusion cage plus pedicle screws with rigid rods; (4) Type 4, interbody fusion cage plus Type 2; (5) Type 5, Type 1 plus Type 2. Flexion/extension of 10 Nm with a compressive follower load of 400N was applied. As compared to the Type 3 (62~65%) and Type 4 (59~62%), Type 5 (53~55%) was able to limit the motion at the operated level effectively, despite moderate reduction at the adjacent level. It was also able to shift the load back to the anterior portions of the spine thus relieving excessively high posterior load transfer and to reduce stress on the endplate by absorbing the load with its flexible shape design features. The likelihood of component failure of flexble cage remained less than 30% regardless of loading conditions when combined with pedicle screws with flexible rods. Our study demonstrated that flexible cages when combined with posterior dynamic system may help reduce subsidence of cage and degeneration process at the adjacent levels while effectively providing stability at the operated level.

Anterior Lumbar Interbody Fusion with Stand-Alone Interbody Cage in Treatment of Lumbar Intervertebral Foraminal Stenosis : Comparative Study of Two Different Types of Cages

  • Cho, Chul-Bum;Ryu, Kyeong-Sik;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.5
    • /
    • pp.352-357
    • /
    • 2010
  • Objective : This retrospective study was performed to evaluate the clinical and radiological results of anterior lumbar interbody fusion (ALIF) using two different stand-alone cages in the treatment of lumbar intervertebral foraminal stenosis (IFS). Methods : A total of 28 patients who underwent ALIF at L5-S1 using stand-alone cage were studied [Stabilis$^{(R)}$ (Stryker, Kalamazoo, MI, USA); 13, SynFix-LR$^{(R)}$ (Synthes Bettlach, Switzerland); 15]. Mean follow-up period was 27.3 ${\pm}$ 4.9 months. Visual analogue pain scale (VAS) and Oswestry disability index (ODI) were assessed. Radiologically, the change of disc height, intervertebral foraminal (IVF) height and width at the operated segment were measured, and fusion status was defined. Results : Final mean VAS (back and leg) and ODI scores were significantly decreased from preoperative values (5.6 ${\pm}$ 2.3 ${\rightarrow}$ 2.3 ${\pm}$ 2.2, 6.3 ${\pm}$ 3.2 ${\rightarrow}$1.6 ${\pm}$ 1.6, and 53.7 ${\pm}$ 18.6 ${\rightarrow}$ 28.3 ${\pm}$ 13.1, respectively), which were not different between the two devices groups. In Stabilis$^{(R)}$ group, postoperative immediately increased disc and IVF heights (10.09 ${\pm}$ 4.15 mm ${\rightarrow}$ 14.99 ${\pm}$ 1.73 mm, 13.00 ${\pm}$ 2.44 mm ${\rightarrow}$ 16.28 ${\pm}$ 2.23 mm, respectively) were gradually decreased, and finally returned to preoperative value (11.29 ${\pm}$ 1.67 mm, 13.59 ${\pm}$ 2.01 mm, respectively). In SynFix-LR$^{(R)}$ group, immediately increased disc and IVF heights (9.60 ${\pm}$ 2.82 mm ${\rightarrow}$ 15.61 ${\pm}$ 0.62 mm, 14.01 ${\pm}$ 2.53 mm ${\rightarrow}$ 21.27 ${\pm}$ 1.93 mm, respectively) were maintained until the last follow up (13.72 ${\pm}$ 1.21 mm, 17.87 ${\pm}$ 2.02 mm, respectively). The changes of IVF width of each group was minimal pre- and postoperatively. Solid arthrodesis was observed in 11 patients in Stabilis group (11/13, 84.6%) and 13 in SynFix-LR$^{(R)}$ group (13/15, 86.7%). Conclusion : ALIF using stand-alone cage could assure good clinical results in the treatment of symptomatic lumbar IFS in the mid-term follow up. A degree of subsidence at the operated segment was different depending on the device type, which was higher in Stabilis$^{(R)}$ group.

Subsidence of Cylindrical Cage ($AMSLU^{TM}$ Cage) : Postoperative 1 Year Follow-up of the Cervical Anterior Interbody Fusion

  • Joung, Young-Il;Oh, Seong-Hoon;Ko, Yong;Yi, Hyeong-Joong;Lee, Seung-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.367-370
    • /
    • 2007
  • Objective : There are numerous reports on the primary stabilizing effects of the different cervical cages for cervical radiculopathy. But, little is known about the subsidence which may be clinical problem postoperatively. The goal of this study is to evaluate subsidence of cage and investigate the correlation between radiologic subsidence and clinical outcome. Methods : To assess possible subsidence, the authors investigated clinical and radiological results of the one-hundred patients who underwent anterior cervical fusion by using $AMSLU^{TM}$ cage during the period between January 2003 and June 2005. Preoperative and postoperative lateral radiographs were measured for height of intervertebral disc space where cages were placed intervertebral disc space was measured by dividing the sum of anterior, posterior, and midpoint interbody distance by 3. Follow-up time was 6 to 12 months. Subsidence was defined as any change in at least one of our parameters of at least 3 mm. Results : Subsidence was found in 22 patients (22%). The mean value of subsidence was 2.21 mm, and mean subsidence rate was 22%. There were no cases of the clinical status deterioration during the follow-up period No posterior or anterior migration was observed. Conclusion : The phenomenon of subsidence is seen in substantial number of patients. Nevertheless, clinical and radiological results of the surgery were favorable. An excessive subsidence may result in hardware failure. Endplate preservation may enables us to control subsidence and reduce the number of complications.

Development and Mechanical Performance Evaluation of Lumbar Porous Interbody Fusion Cage (요추부 다공성 추간체유합보형재의 개발 및 기계적 성능 평가)

  • Ahn, Yoon-Ho;Yoo, Kyeong-Joo;Park, Kwang-Min;Cha, Eun-Jong;Kim, Kyung-Ah;Ahn, Kyoung-Gee
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Recently, porous additive manufactured(AM) cages have been introduced to provide more desirable stiffness and may be beneficial to bone ingrowth. They are designed to attempt to reduce the subsidence problem of traditional titanium cage and to get osseointegrative property that PEEK doesn't have. This study was performed to evaluate the mechanical performance of newly developed lumbar porous AM cages. Three types of mechanical tests were performed in accordance with the ASTM standards: Static compression, compression-shear, and subsidence tests. The porous AM cages with 60% porosity showed similar device stiffness and strength as the various products submitted to FDA 510(k), and their wider contact area improved the subsidence test results by about 50%. In conclusion, the porous AM cages developed in this study were considered mechanically safe and could be an alternative to solid PEEK cages.

Do Trunk Muscles Affect the Lumbar Interbody Fusion Rate? : Correlation of Trunk Muscle Cross Sectional Area and Fusion Rates after Posterior Lumbar Interbody Fusion Using Stand-Alone Cage

  • Choi, Man Kyu;Kim, Sung Bum;Park, Bong Jin;Park, Chang Kyu;Kim, Sung Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.276-281
    • /
    • 2016
  • Objective : Although trunk muscles in the lumbar spine preserve spinal stability and motility, little is known about the relationship between trunk muscles and spinal fusion rate. The aim of the present study is to evaluate the correlation between trunk muscles cross sectional area (MCSA) and fusion rate after posterior lumbar interbody fusion (PLIF) using stand-alone cages. Methods : A total of 89 adult patients with degenerative lumbar disease who were performed PLIF using stand-alone cages at L4-5 were included in this study. The cross-sectional area of the psoas major (PS), erector spinae (ES), and multifidus (MF) muscles were quantitatively evaluated by preoperative lumbar magnetic resonance imaging at the L3-4, L4-5, and L5-S1 segments, and bone union was evaluated by dynamic lumbar X-rays. Results : Of the 89 patients, 68 had bone union and 21 did not. The MCSAs at all segments in both groups were significantly different (p<0.05) for the PS muscle, those at L3-4 and L4-5 segments between groups were significantly different (p=0.048, 0.021) for the ES and MF muscles. In the multivariate analysis, differences in the PS MCSA at the L4-5 and L5-S1 segments remained significant (p=0.048, 0.043 and odds ratio=1.098, 1.169). In comparison analysis between male and female patients, most MCSAs of male patients were larger than female's. Fusion rates of male patients (80.7%) were higher than female's (68.8%), too. Conclusion : For PLIF surgery, PS muscle function appears to be an important factor for bone union and preventing back muscle injury is essential for better fusion rate.

Anterior Cervical Discectomy and Fusion Using a Stand-Alone Polyetheretherketone Cage Packed with Local Autobone : Assessment of Bone Fusion and Subsidence

  • Park, Jeong-Ill;Cho, Dae-Chul;Kim, Kyoung-Tae;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.3
    • /
    • pp.189-193
    • /
    • 2013
  • Objective : It remains debatable whether cervical spine fusion cages should be filled with any kind of bone or bone substitute. Cortical and subcortical bone from the anterior and posterior osteophytes of the segment could be used to fill the cage. The purposes of the present study are to evaluate the clinical outcomes and radiological outcomes including bone fusion and subsidence that occurred after anterior cervical discectomy and fusion using a stand-alone cage packed with local autobone graft. Methods : Thirty-one patients who underwent anterior cervical fusion using a stand-alone polyetheretherketone (PEEK) cage packed with local autobone graft from July 2009 to december 2011 were enrolled in this study. Bone fusion was assessed by cervical plain radiographs and computed tomographic scan. Nonunion was evaluated according to the absence of bony bridge on computed tomographic scan. Subsidence was defined as a ${\geq}2$ mm decrease of the interbody height at the final follow-up compared to that measured at the immediate postoperative period. Results : Subsidence was observed in 7 patients (22.6%). Of 7 patients with subsidence greater 2 mm, nonunion was developed in 3. Three patients with subsidence greater 2 mm were related with endplate damage during intraoperative endplate preparation. Solid bone fusion was achieved in 28 out of 31 patients (90.3%). Conclusion : With proper patient selection and careful endplate preparation, anterior cervical discectomy and fusion (ACDF) using a stand-alone PEEK cage packed with local autobone graft could be a good alternative to the standard ACDF techniques with plating.

A Prospective Study with Cage-Only or Cage-with-Plate Fixation in Anterior Cervical Discectomy and Interbody Fusion of One and Two Levels

  • Kim, Sam Yeol;Yoon, Seung Hwan;Kim, Dokeun;Oh, Chang Hyun;Oh, Seyang
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.691-700
    • /
    • 2017
  • Objective : The authors prospectively analyzed the effect of one-level or two-level anterior cervical discectomy and fusion (ACDF), comparing stand-alone cages and cage-with-plate fixation constructs with respect to clinical outcomes and radiologic changes. Methods : A total of 84 patients who underwent one-level (n=52) or two-level ACDF (n=32) for cervical disc disease and who completed 2 years of follow-up were included in this study. The patients were divided by cervical level and grouped into ACDF-Cage-only and ACDF-Cage-with-plate groups. The following parameters were assessed using radiographs : subsidence, C2-C7 lordosis angle, fusion segment angle, adjacent disc space narrowing, and fusion status. Clinical outcomes were assessed using the neck disability index (NDI) and visual analog scale scores for arm pain. Results : In the comparison of one-level ACDF-cage-only and ACDF-cage-with-plate groups, the NDI score was better in the cage-only group at the 3-, 12-, and 24-month follow-ups : however, no significant difference in clinical outcomes was observed. In the comparison of two-level ACDF-cage-only and ACDF-cage-with-plate groups, no difference in any clinical outcome was observed between the two groups. At the 24-month follow-up, subsidence was observed in 45.8% of patients in the one-level cage-only group and 32.1% of patients in the one-level cage-with-plate fixation group. There was no statistically significant difference in the incidence rate between the two groups (p=0.312). Subsidence in the two-level cage-only group (66.6%) was significantly more frequent than in the two-level cage-with-plate fixation group (30%; p=0.049). The fusion rate for patients in the one-level cage-only group was not significantly different from that in the one-level cage-with-plate fixation group (cage-only, 87.5%; cage-with-plate fixation, 92.9%; p=0.425) ; fusion rate in the two-level patients were also similar between groups (cage-only, 83.3%; cage-with-plate fixation, 95%; p=0.31). Conclusion : Our clinical results showed that for single-level cases, plate fixation had no additional benefit versus cage-only; for two-level ACDF cases, the fusion rate and clinical outcomes were similar, although the cage-with-plate fixation group had a lower incidence of cage subsidence than did the cage-only group. We conclude that physicians should be aware of this possible disadvantage associated with using cervical plates in one-level ACDF. However, in two-level ACDF, subsidence is more likely to occur without plate fixation, and thus the addition of plate fixation should be considered.

Finite Element Analysis of Instrumented Posterior Lumbar Interbody Fusion Cages for Reducing Stress Shielding Effects: Comparison of the CFRP cage and Titanium cage (요추유합술에서 응력방패 현상 감소를 위한 케이지의 유한요소해석 : CFRP 케이지와 티타늄 케이지 비교 연구)

  • Kang, Kyung-Tak;Chun, Heoung-Jae;Kim, Ho-Joong;Yeom, Jin-S.;Park, Kyoung-Mi;Hwang, In-Han;Lee, Kwang-Ill
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.98-104
    • /
    • 2012
  • In recent years, degenerative spinal instability has been effectively treated with a cage. However, little attention is focused on the stiffness of the cage. Recent advances in the medical implant industry have resulted in the use of medical carbon fiber reinforced polymer (CFRP) cages. The biomechanical advantages of using different cage material in terms of stability and stresses in bone graft are not fully understood. A previously validated three-dimensional, nonlinear finite element model of an intact L2-L5 segment was modified to simulate posterior interbody fusion cages made of CFRP and titanium at the L4-L5 disc with pedicle screw, to investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region. From the results, it could be found that the use of a CFRP cage would not only reduce stress shielding, but it might also have led to increased bony fusion.

Polyetheretherketone Cage with Demineralized Bone Matrix Can Replace Iliac Crest Autografts for Anterior Cervical Discectomy and Fusion in Subaxial Cervical Spine Injuries

  • Kim, Soo-Han;Lee, Jung-Kil;Jang, Jae-Won;Park, Hyun-Woong;Hur, Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.211-219
    • /
    • 2017
  • Objective : This study aimed to compare the clinical and radiologic outcomes of patients with subaxial cervical injury who underwent anterior cervical discectomy and fusion (ACDF) with autologous iliac bone graft or polyetheretherketone (PEEK) cages using demineralized bone matrix (DBM). Methods : From January 2005 to December 2010, 70 patients who underwent one-level ACDF with plate fixation for post-traumatic subaxial cervical spinal injury in a single institution were retrospectively investigated. Autologous iliac crest grafts were used in 33 patients (Group I), whereas 37 patients underwent ACDF using a PEEK cage filled with DBM (Group II). Plain radiographs were used to assess bone fusion, interbody height (IBH), segmental angle (SA), overall cervical sagittal alignment (CSA, C2-7 angle), and development of adjacent segmental degeneration (ASD). Clinical outcome was assessed using a visual analog scale (VAS) for pain and Frankel grade. Results : The mean follow-up duration for patients in Group I and Group II was 28.9 and 25.4 months, respectively. All patients from both groups achieved solid fusion during the follow-up period. The IBH and SA of the fused segment and CSA in Group II were better maintained during the follow-up period. Nine patients in Group I and two patients in Group II developed radiologic ASD. There were no statistically significant differences in the VAS score and Frankel grade between the groups. Conclusion : This study showed that PEEK cage filled with DBM, and plate fixation is at least as safe and effective as ACDF using autograft, with good maintenance of cervical alignment. With advantages such as no donor site morbidity and no graft-related complications, PEEK cage filled with DBM, and plate fixation provide a promising surgical option for treating traumatic subaxial cervical spine injuries.

Demineralized Bone Matrix (DBM) as a Bone Void Filler in Lumbar Interbody Fusion : A Prospective Pilot Study of Simultaneous DBM and Autologous Bone Grafts

  • Kim, Bum-Joon;Kim, Se-Hoon;Lee, Haebin;Lee, Seung-Hwan;Kim, Won-Hyung;Jin, Sung-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.225-231
    • /
    • 2017
  • Objective : Solid bone fusion is an essential process in spinal stabilization surgery. Recently, as several minimally invasive spinal surgeries have developed, a need of artificial bone substitutes such as demineralized bone matrix (DBM), has arisen. We investigated the in vivo bone growth rate of DBM as a bone void filler compared to a local autologous bone grafts. Methods : From April 2014 to August 2015, 20 patients with a one or two-level spinal stenosis were included. A posterior lumbar interbody fusion using two cages and pedicle screw fixation was performed for every patient, and each cage was packed with autologous local bone and DBM. Clinical outcomes were assessed using the Numeric Rating Scale (NRS) of leg pain and back pain and the Korean Oswestry Disability Index (K-ODI). Clinical outcome parameters and range of motion (ROM) of the operated level were collected preoperatively and at 3 months, 6 months, and 1 year postoperatively. Computed tomography was performed 1 year after fusion surgery and bone growth of the autologous bone grafts and DBM were analyzed by ImageJ software. Results : Eighteen patients completed 1 year of follow-up, including 10 men and 8 women, and the mean age was 56.4 (32-71). The operated level ranged from L3/4 to L5/S1. Eleven patients had single level and 7 patients had two-level repairs. The mean back pain NRS improved from 4.61 to 2.78 (p=0.003) and the leg pain NRS improved from 6.89 to 2.39 (p<0.001). The mean K-ODI score also improved from 27.33 to 13.83 (p<0.001). The ROM decreased below 2.0 degrees at the 3-month assessment, and remained less than 2 degrees through the 1 year postoperative assessment. Every local autologous bone graft and DBM packed cage showed bone bridge formation. On the quantitative analysis of bone growth, the autologous bone grafts showed significantly higher bone growth compared to DBM on both coronal and sagittal images (p<0.001 and p=0.028, respectively). Osteoporotic patients showed less bone growth on sagittal images. Conclusion : Though DBM alone can induce favorable bone bridging in lumbar interbody fusion, it is still inferior to autologous bone grafts. Therefore, DBM is recommended as a bone graft extender rather than bone void filler, particularly in patients with osteoporosis.