• Title/Summary/Keyword: Interaction of jets

Search Result 52, Processing Time 0.026 seconds

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 바른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.-M.;Kim, Youn J.;Cho, H.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.298-303
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1{\times}10^4$. The effect of coolant flow rates was studied for blowing ratios of 0.7, 0.9, 1.2 and 1.5, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

  • PDF

Experimental Study of the Characteristics of 2-Dimensional Coanda Nozzle Jet (2차원 Coanda 노즐 제트 의 특성 에 관한 실험적 연구)

  • 이동호;정명균;김응태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.222-231
    • /
    • 1982
  • A single free jet formed by the interaction of two curved wall jets on a Cylinder surface is defined as "the Coanda nozzle jet" in this study. In order to investigate the characteristics of Coanda nozzle jet, an experimental analysis was carried out; measurements of the static pressure distribution on the cylinder surface, the mean velocity profile, the turbulence intensity, and the Reynolds shear stress by using x-type hot-wire probe.ire probe.

Analysis of Blood Flow Interacted with Leaflets in MHV in View of Fluid-Structure Interaction

  • Park, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.613-622
    • /
    • 2001
  • Interaction of blood flow and leaflet behavior in a bileaflet mechanical heart valve was investigated using computational analysis. Blood flows of a Newtonian fluid and a non-Newtonian fluid with Carreau model were modeled as pulsatile, laminar, and incompressible. A finite volume computational fluid dynamics code and a finite element structure dynamics code were used concurrently to solve the flow and structure equations, respectively, where the two equations were strongly coupled. Physiologic ventricular and aortic pressure waveforms were used as flow boundary conditions. Flow fields, leaflet behaviors, and shear stresses with time were obtained for Newtonian and non-Newtonian fluid cases. At the fully opened phase three jets through the leaflets were found and large vortices were present in the sinus area. At the very final stage of the closing phase, the angular velocity of the leaflet was enormously large. Large shear stress was found on leaflet tips and in the orifice region between two leaflets at the final stage of closing phase. This method using fluid-structure interaction turned out to be a useful tool to analyze the different designs of existing and future bileaflet valves.

  • PDF

FLOW CONTROL ON ELLIPTIC AIRFOILS USING SYNTHETIC JET (합성제트를 이용한 타원형 익형 유동제어)

  • Kim, S.H.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • In the present work, the aerodynamic characteristics of elliptic airfoils which have a 12% thickness ratio are numerically investigated based on Reynolds-averaged Navier-Stokes equations and a transition SST model at a Reynolds number 8.0$\times$105. The numerical simulation of a synthetic jet actuator which is a well-known zero-net-mass active flow control actuator located at x/c = 0.00025, was performed to control massive flow separation around the leading edge of the elliptic airfoils. Four cases of non-dimensional frequencies were simulated at an angle of attack of 12 degree. It is found that the size of the vortex induced by synthetic jets was getting smaller as the jet frequency becomes higher. Comparison of the location of synthetic jets between x/c = 0.00025 (around the leading edge) and x/c = 0.9 (near the separation) shows that the control near the leading edge induces closed recirculation flow regions caused by the interaction of the synthetic jet with the external flow, but the control applied at 0.9c (near the trailing edge) induces a very small and weak vortex which quickly decays due to weak intensity.

Flow and Combustion Characteristic in an Array of Multiple Pre-Mixed Methane/Air Flame Jets (메탄/공기 다중 제트 예혼합 화염에서의 유동과 연소특성)

  • Kim, Young-Su;Lee, Dae-Rae;Ha, Man-Yeong;Chang, Young-June;Jeon, Chung-Hwan;Cho, Seung-Wan;Kang, Kil-Young;Yu, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.547-557
    • /
    • 2007
  • This study was conducted to investigate the flow and combustion characteristic of the experimental burner which was manufactured for the reflection of the oven and broil burner features. As slot shape, spacing between slots, and slot arrangement of the exit area which emits the mixing gas are different in case of oven burners and broil turners, the purpose of this study is to know the affection of the flame interaction and combustion characteristic according to the change of shape factors such as slot shape, slot arrangement, and slot-to-slot spacing. With no relation of the slot shape, as the spacing between slots became narrow, the occurrence of a lift-flame was delayed. So the combustion was possible in the leaner region, but the appearance of yellow-tip became a little fast. Slit slot port had the broadest operating range among the other slot shapes. Specially, from the side of lift-flame, as the jet that spreads downstream in the longitudinal slot was nearly circular just a few slot lengths away from the orifice, slot-to-slot spacing of the Slit port was closer than the other ports. These results could be expected through the computer numerical method and had a good agreement. As the spacing between slots increased, in case of Slit and Mix port, NOx emission rate was constant or decreased, but the NOx emission of Hole port was increased. CO emission rate of Slit and Hole port was increased as the slot-to-slot spacing was broadened.

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

CHANDRA X-RAY OBSERVATIONS OF EARLY TYPE GALAXIES

  • KIM DONG-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.213-222
    • /
    • 2003
  • We review recent observational results on early type galaxies obtained with high spatial resolution Chandra data. With its unprecedented high spatial resolution, Chandra reveals many intriguing features in early type galaxies which were not identified with the previous X-ray missions. In particular, various fine structures of the hot ISM in early type galaxies are detected, for example, X-ray cavities which are spatially coincident with radio jets/lobes, indicating the interaction between the hot ISM and radio jets. Also point sources (mostly LMXBs) are individually resolved down to Lx = a few x $10^{37}\;erg\;sec^{-1}$ and it is for the first time possible to unequivocally investigate their properties and the X-ray luminosity function. After correcting for incompleteness, the XLF of LMXBs is well reproduced by a single power law with a slope of -1.0 - -1.5, which is in contrast to the previous report on the existence of the XLF break at Lx, Eddington = 2 x $10^{38}\;erg\;sec^{-1}$ (i.e., Eddington luminosity of a neutron star binary). Carefully considering both detected and undetected, hidden populations of point sources we further discuss the XLF of LMXBs and the metal abundance of the hot ISM and their impact on the properties of early type galaxies.

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 따른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.M.;Kim, Youn J.;Cho, H.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.21-27
    • /
    • 2003
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of a turbine blade, cylindrical body model is used. Mainstream Reynolds number based on the cylinder diameter is $7.1{\times}10^4$. The effects of coolant flow rates are studied for blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The temperature distribution of the cylindrical model surface is visualized with infrared thermography (IRT). Results show that the film cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

Measurements and Analysis on Hydroelastic Flow-Structure Interactions (유체-구조 유탄성 연성운동 측정해석)

  • Doh, D.H.;Jo, H.J.;Hwang, T.G.;Cho, K.R.;Pyeon, Y.B.;Cho, Y.B.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.53-54
    • /
    • 2006
  • Experimental analyses on the Hydroelastic Flow-Structure Interactions on pulsed impinged jet is measured with the FSIMS(Flow-Structure Interaction Measurement System. The nozzle diameter is D=15mm and two major experiments have been carried out for the cases of the distance between the nozzle tip to the elastic wall is 6.0. The pulsed jets were controlled by a solenoid valve and were impinged onto an elastic plate (material: silicon, diameter: 350mm, thickness: 0.5mm, hardness: 15). The Reynolds numbers were 20,000 and 24,000 when the jets were impinged with the volume velocities. The results showed that the elastic plate moved slightly to the opposite direction of the jet direction at the time of valve opening. It has been shown that the vortices travelling over the surface of the wall made the elastic wall distorted locally due to a vector forces between rotating forces of the vortex and a newly-incoming flow.

  • PDF

The Effect of Swirl on the Blowout Velocities of Partially Premixed Interacting Flames (스월이 부분예혼합 상호작용화염의 화염날림 유속에 미치는 영향)

  • Lee, Byeong-Jun;Choi, Kwang-Deok
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.26-31
    • /
    • 2009
  • Adding small amounts of air to the fuel is used in many commercial combustors to avoid sooty flame. But partially premixed jet flame has lower blowout velocity, $u_{b.o}$, than nonpremixed one. Increasing blowout limit would be one of the key factors to develope highly intense compact combustion devices. Swirling flow enhances fuel and air mixing and induces a highly turbulent recirculation zone, which helps flame stabilization. It was known that NOx emission decreases with swirl on the proper range of swirl number. And it was shown that the flame interaction in multiple jets also increases $u_{b.o}$ owing to the internal recirculation and reduces NO emission. If the effects of swirl and flame interaction are combined together in partially premixed flame, both $u_{b.o}$ increasement and NOx emission reduction could be achieved. Blowout limits of partially premixed interacting propane flame in the swirling air coflow are investigated experimentally. The results show that the flame is not extinguished up to the experimental limits, 210 m/s, at the swirl number of 0.32 and $X_{F,o}$ = 0.46.

  • PDF