Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)
-
- Journal of Intelligence and Information Systems
- /
- v.17 no.4
- /
- pp.305-316
- /
- 2011
Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.
While e-commerce market(B2C) grows rapidly, many experts argue that EC(B2C) transactions have not reached its full potential. A notable difference between online and offline consumer markets that is suppressing the growth of EC(B2C) is the decreased presence of human and social elements in the online shopping environments. Generally online shopping lacks human warmth and sociability. In this study, social presence in online shopping mall was proposed as a substitute for face-to-face social interaction in the traditional commerce and author explored what variables affect social presence(human warmth and sociability) on online shopping malls and how human warmth and sociability can influence on online store loyalty. To achieve research objectives, we reviewed literatures related with marketing, psychology and communication research areas. Based on literature review, we proposed a research model on the online shopping mall. To examine the proposed research model, we gathered data by using a self-report questionnaire. Respondents consists of online shoppers with at least five or more times of purchase experience in online shopping malls. Because social presence is a feeling which needs frequent contacts with malls to experience, respondents must have enough purchase experiences. The empirical results are as follows : First, shopping mall's customization efforts influence perceived social presence on the mall significantly. Second, shopping mall's responsiveness influences perceived social presence significantly. Third, perceived activity of community of online shopping mall influences perceived social presence significantly. Mall managers have to activate their customer community to reinforce social presence, resulting in trust building. Finally, perceived social presence influences trust and enjoyment on the mall significantly. And then trust and enjoyment on the mall affect store loyalty significantly. From these findings it can be inferred that perceived social presence appears determinant which is critical to the formation of core variables(trust and loyalty) in existing online shopping papers.
As COVID-19 spreads, people's interest in smart learning that can do non-face-to-face learning is increasing nowadays. In this study, we aim to empirically analyze how users' thoughts on COVID-19 and the information quality and system quality of smart learning systems affect users' acceptance of smart learning and examine the effect of perceived sensitivity and severity of COVID-19 on the satisfaction and use of smart learning through concerns about the risk of transmission. In addition, we examined the influence of information quality composed of content quality and interaction quality and system quality composed of system accessibility and functionality on the use of smart learning through user satisfaction. To verify the validity of the proposed model, we conducted a survey on 334 users with experience in using smart learning, and performed the analysis using Smart PLS 3.0. According to the analysis results, among information quality and system quality, only functionality has a positive (+) effect on the satisfaction of smart learning, and satisfaction has a positive (+) effect on the usage behavior. However, it is found that accessibility among system quality do not affect satisfaction, and concern about the risk of transmission has a negative effect on satisfaction. This study can provide meaningful guidelines to researchers when researching smart learning to support students' learning in a pandemic situation of a new infectious disease, such as COVID-19. It will also be able to provide useful implications for educational institutions and companies related to smart learning.
Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.
1. Introduction: Contrast to the offline purchasing environment, online store cannot offer the sense of touch or direct visual information of its product to the consumers. So the builder of the online shopping mall should provide more concrete and detailed product information(Kim 2008), and Alba (1997) also predicted that the quality of the offered information is determined by the post-purchase consumer satisfaction. In practice, many fashion and apparel online shopping malls offer the picture information with the product on the real person model to enhance the usefulness of product information. On the other virtual product experience has been suggested to the ways of overcoming the online consumers' limited perceptual capability (Jiang & Benbasat 2005). However, the adoption and the facilitation of the virtual reality tools requires high investment and technical specialty compared to the text/picture product information offerings (Shaffer 2006). This could make the entry barrier to the online shopping to the small retailers and sometimes it could be demanding high level of consumers' perceptual efforts. So the expensive technological solution could affects negatively to the consumer decision making processes. Nevertheless, most of the previous research on the online product information provision suggests the VR be the more effective tools. 2. Research Model and Hypothesis: Presented in
The research conducted here focuses on the effect of factors that affect the behavior of UCC (User Created Content) website users, other than user's rational recognition of how useful a UCC website can be. Most discussions in the existing literature on information systems have focused on users' evaluation how a UCC website can help to attain the users' own goals. However, there are other factors and this research pays attention to an individual's 'personality,' which is stable and biological in nature. Specifically, I have noted here that 'extroversion' and 'neuroticism,' the two common personality factors presented in Eysenck's most representative 'EPQ Model' and 'Big Five Model,' are the two personality factors that affect a site's 'usefulness,' by this I mean how useful does the user consider the website and its content. How useful a site is considered by the user is the other factor that has been regarded as the antecedent factor that influences the adoption of information systems in the existing MIS (Management Information System) research. Secondly, as using or creating a UCC website does not guarantee the user's or the creator's extrinsic motivation, unlike when using the information system within an organization, there is a greater likelihood that the increase in user's activities in relation to a UCC website is motivated by emotional factors rather than rational factors. Thus, I have decided to include the relationship between an individual's personality and what they find pleasurable in the research model. Thirdly, when based on the S-O-R Paradigm of Mehrabian and Russell, the two cognitive factors and emotional factors are finally affected by stimulus, and thus these factors ultimately have an effect on an individual's respondent behavior. Therefore, this research has presented an assumption that the recognition of how useful the site and content is and what emotional pleasure it provides will finally affect the behavior of the UCC website users. Finally, the relationship between the recognition of how useful a site is and how pleasurable it is to useand UCC usage may differ depending on certain situational conditions. In other words, the relationship between the three factors may vary according to how much users are involved in the creation of the website content. Creation thus emerges as the keyword of UCC. I analyzed the above relationships through the moderating variable of the user's involvement in the creation of the site. The research result shows the following: When it comes to the relationship between an individual's personality and what they find pleasurable it is extroverted users who have a greater likelihood to feel pleasure when using a UCC website, as was expected in this research. This in turn leads to a more active usage of the UCC web site because a person who is an extrovert likes to spend time on activities with other people, is sensitive to new experiences and stimuli and thus actively responds to these. An extroverted person accepts new UCC activities as part of his/her social life, rather than getting away from this new UCC environment. This is represented by the term 'Foxonomy' where the users meet a variety of users from all over the world and contact new types of content created by these users. However, neuroticism creates the opposite situation to that created by extroversion. The representative symptoms of neuroticism are instability, stress, and tension. These dispositions are more closely related to stress caused by a new environment rather than this creatingcuriosity or pleasure. Thus, neurotic persons have an uneasy feeling and will eventually avoid the situation where their own or others' daily lives are frequently exposed to the open web environment, this eventually makes them have a negative attitude towards the web environment. When it comes to an individual's personality and how useful site is, the two personality factors of extroversion and neuroticism both have a positive relationship with the recognition of how useful the site and its content is. The positive, curious, and social dispositions of extroverted persons tend to make them consider the future usefulness and possibilities of a new type of information system, or website, based on their positive attitude, which has a significant influence on the recognition of how useful these UCC sites are. Neuroticism also favorably affects how useful a UCC website can be through a different mechanism from that of extroversion. As the neurotic persons tend to feel uneasy and have much doubt about a new type of information system, they actively explore its usefulness in order to relieve their uncomfortable feelings. In other words, neurotic persons seek out how useful a site can be in order to secure their own stable feelings. Meanwhile, extroverted persons explore how useful a site can be because of their positive attitude and curiosity. As a lot of MIS research has revealed that the recognition of how useful a site can be and how pleasurable it can be to use have been proven to have a significant effect on UCC activity. However, the relationship between these factors reveals different aspects based on the user's involvement in creation. This factor of creationgauges the interest of users in the creation of UCC contents. Involvement is a variable that shows the level of an individual's mental effort in creating UCC contents. When a user is highly involved in the creation process and makes an enormous effort to create UCC content (classed a part of a high-involvement group), their own pleasure and recognition of how useful the site is have a significantly higher effect on the future usage of the UCC contents, more significantly than the users who sit back and just retrieve the UCC content created by others. The cognitive and emotional response of those in the low-involvement group is unlikely to last long,even if they recognize the contents of a UCC website is pleasurable and useful to them. However, the high-involvement group tends to participate in the creation and the usage of UCC more favorably, connecting the experience with their own goals. In this respect, this research presents an answer to the question; why so many people are participating in the usage of UCC, the representative form of the Web 2.0 that has drastically involved more and more people in the creation of UCC, even if they cannot gain any monetary or social compensation. Neither information system nor a website can succeed unless it secures a certain level of user base. Moreover, it cannot be further developed when the reasons, or problems, for people's participation are not suitably explored, even if it has a certain user base. Thus, what is significant in this research is that it has studied users' respondent behavior based on an individual's innate personality, emotion, and cognitive interaction, unlike the existing research that has focused on 'compensation' to explain users' participation with the UCC website. There are also limitations in this research. Firstly, I divided an individual's personality into extroversion and neuroticism; however, there are many other personal factors such as neuro-psychiatricism, which also needs to be analyzed for its influence on UCC activities. Secondly, as a UCC website comes in many types such as multimedia, Wikis, and podcasting, these types need to be included as a sub-category of the UCC websites and their relationship with personality, emotion, cognition, and behavior also needs to be analyzed.
Characterizing the risk posed by a mixture of chemicals is a challenging task due to the chemical interactions of individual components that may affect their physical behavior and hence alter their exposure to receptors. In this study, cell tests that represent subsurface environment were carried out using benz[a]anthracene (BaA) and p-xylene focusing on phasetransforming interaction to verify increased mobility and risk of highly sorbed pollutants in the presence of less sorbed, mobile liquid pollutants. A transport model was also developed to interpret results and to simulate the same process on a field scale. The experimental results showed that BaA had far greater mobility in the presence of p-xylene than in the absence of that. The main transport mechanisms in the vadose zone were by dissolution to p-xylene or water. The transport model utilizing Defined Time Steps (DTS) was developed and tested with the experimental results. The predicted and observed values showed similar tendency, but the more work is needed in the future study for more precise modeling. The field-scale simulation results showed that transport of BaA to groundwater table was significantly faster in the presence of NAPL, and the oral carcinogenic risk of BaA calculated with the concentration in groundwater was 15
This study was to examine single or combined in vitro effects of environmental endocrine disruptors on boar sperm characteristics, oxidative stress damage in sperm and development of porcine IVF embryos. Addition of various concentration of NP (10, 20,
A study was conducted with 48 weaned barrows (
Objectives : A variety of symptoms are typically reported during anxiety period, several of which are clearly linked to the autonomic nervous system(ANS), such as palpitations, chest pain and shortness of breath. Using spectral analysis of heart rate, several studies have shown that patients with anxiety disorder are characterized by a reduced heart rate variability(HRV), indicative of abnormalities in ANS fuction. To further evaluate the effect of anxiety and medication on autonomic function, 30 patients and 30 matched control subjects were assessed. Methods : Using spectral analysis of heart rate, which consisted of standardised measurements of HRV, we compared ANS between 30 patients with DSM-IV diagnosed anxiety disorder and 30 healthy controls, and investigated the autonomic effects of SSRI treatment. Five-minute HRV recordings were obtained before and after SSRI treatment and were analysed. Results : Five-minute HRV recordings in anxiety disorder patients revealed that a significant reduction in HRV was shown compared to controls. There was no significant changes in HRV between before and after SSRI treatment. Conclusion: Anxiety disorder patients showed a significant reduction in HRV compared to controls. SSRIs do not affect HRV influenced by ANS function. Further study is needed to confirm these things. Patients with anxiety disorder may suffer from functional disturbances in the interaction between the sympathetic and parasympathetic autonomic tree.
indicates that our experimental manipulation of the moderate effect of the product type was successful. 3.3. Results As
indicates, there was a significant main effect on the only one dependent variable(attitude toward the shopping mall) by the information types. As predicted, VR has highest mean value compared to other information types. Thus, H1 was partially supported. However, main effect by the product types was not found. To evaluate H2 and H3, a two-way ANOVA was conducted. As
indicates, there exist the interaction effects on the three dependent variables(information usefulness, overall product quality and purchase intention) by the information types and the product types. As predicted, picture of the product with the real-person model has highest mean among the information types in the case of portable product. On the other hand, VR has highest mean among the information types in the case of installed product. Thus, H2 and H3 was supported. 4. Implications: The present study found the moderate effect by the product type of usage situation. Based on the findings the following managerial implications are asserted. First, it was found that information types are affect only the attitude toward the shopping mall. The meaning of this finding is that VR effects are not enough to understand the product itself. Therefore, we must consider when and how to use this VR tools. Second, it was found that there exist the interaction effects on the information usefulness, overall product quality and purchase intention. This finding suggests that consideration of usage situation helps consumer's understanding of product and promotes their purchase intention. In conclusion, not only product attributes but also product usage situations must be fully considered by the online retailers when they want to meet the needs of consumers.
The Effect of Users' Personality on Emotional and Cognitive Evaluation in UCC Web Site Usage
(UCC(user-created-contents) 웹 사이트에서 사용자의 인성이 감정적, 인지적 평가와 UCC 활용에 미치는 영향)
Enhanced Transport and Risk of a Highly Nonpolar Pollutant in the Presence of LNAPL in Soil-groundwater System: In Case of p-xylene and benz[a]anthracene
(LNAPL에 의한 소수성 유기오염물질의 지하환경 내 이동성 변화가 위해성 증가에 미치는 영향: p-xylene과 benz[a]anthracene의 경우)
Effects of Endocrine Disruptors (NP, DBP and BPA) on Sperm Characteristics and Development of IVF Embryos in Pig
Effects of Achyranthes Bidentata Polysaccharide on Growth Performance, Immunological, Adrenal, and Somatotropic Responses of Weaned Pigs Challenged with Escherichia coli Lipopolysaccharide
Heart Rate Variability in Patients with Anxiety Disorder and Effects of Selective Serotonin Reuptake Inhibitor
(불안장애 환자에서의 심박변이도와 세로토닌재흡수억제제투여 후의 치료효과)
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)