• Title/Summary/Keyword: Interaction Theory

Search Result 1,474, Processing Time 0.025 seconds

The Moderating Effects of Organizational Characteristics on the Relationship between Relational Characteristics and Performance in ASP Services (조직특성과 관계교환특성이 ASP 서비스 성과에 미치는 상호작용효과 분석)

  • Chung, Young-Soo;Jung, Chul-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.13-39
    • /
    • 2006
  • The primary purpose of this study is to examine the interaction effects of organizational characteristics as contextual variables on the relationship between relational exchange characteristics and ASP service performance. The effect of relational exchange characteristics on ASP service performance has been also investigated. For this purposes, we developed a research model based on the literature reviews of ASP services, relational exchange theory, and contingency theory. A total of 106 usable survey responses from companies using ASP services has been analyzed in the study. The findings indicate that (1) flexibility and partnership had a positive influence upon noneconomic profit, (2) information sharing had a positive influence upon economic profit, (3) organizational size and IS maturity had a partial moderating effect on the relationship between relational exchange characteristics and ASP service performance, and (4) the subgroup analysis, conducted to determine the exact nature of interaction effect, reveals that the relationship between relational exchange characteristics and noneconomic profit is significantly stronger with a high level of organizational size than with a low level, and that the relationship between relational exchange characteristics and economic profit is significantly stronger with a low level of IS maturity than with a high level.

  • PDF

Steady Drift Forces on Very Large Offshore Structures Supported by Multiple Floating Bodies in Waves(I) (다수의 부체로 지지된 초대형 해양구조물에 작용하는 정상표류력(I))

  • H.J. Jo;J.S. Goo;S.Y. Hong;C.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.123-135
    • /
    • 1995
  • A numerical procedure is described for predicting steady drift forces an multiple three-dimensional bodies of arbitrary shape freely floating in waves. The developed numerical approach is based on combination of a three-dimensional source distribution method, wave interaction theory art the far-field method using momentum theory. Numerical results are compared with the experimental or numerical ones, which are obtained in the literature, of steady drift forces on 33(3 by 11) floating composite vertical cylinders in waves. The results of comparison confirmed the validity of the proposed approach. Finally, the interaction effects are examined in the case of an array of 40(4 by 10) freely floating rectangular bodies in shallow water.

  • PDF

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

Psychological phenomenon analysis of short video users' anxiety, Addiction and Subjective well-being

  • Peng, Chen;Lee, Jong-Yoon;Liu, ShanShan
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.27-39
    • /
    • 2022
  • Short videos are becoming more popular in mobile Internet age. Not only people's media consumption patterns have been changed by the rise of this new media form, but also it has posed challenges to public psychological well-being. For many netizens, their entertainment needs have been met by watching short videos. However, many side effects, such as addiction and anxiety, reduce users' subjective well-being instead of satisfying the entertainment motivation after watching short videos. Therefore, it has become a significant research problem in short videos to figure out how to get audiences to watch short videos on a regular basis while avoiding side effects like anxiety and addiction and improving audiences' subjective well-being. Based on the theory of Internet addiction, this study analyzed short video users using the 2×2×2 research method and explored the relationship between the length of use, addiction, anxiety, and subjective well-being of short video users. The results showed that short video users with different usage lengths showed significant differences in addiction, anxiety, subjective well-being, and online social support; innovative different short video users showed significant differences in addiction and anxiety, as well as a triadic relational interaction of short video users' anxiety under the interaction with self-efficacy and online social support. This study contributes to the advancement of internet addiction theory research and application, assisting short video users in avoiding addiction and anxiety, and improving the subjective well-being of short video users, thereby promoting the growth of the short video industry.

Emerging paradigms in cancer cell plasticity

  • Hyunbin D. Huh;Hyun Woo Park
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.273-280
    • /
    • 2024
  • Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions.

Free vibration of conical shell frusta of variable thickness with fluid interaction

  • M.D. Nurul Izyan;K.K. Viswanathan;D.S. Sankar;A.K. Nor Hafizah
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.601-610
    • /
    • 2024
  • Free vibration of layered conical shell frusta of thickness filled with fluid is investigated. The shell is made up of isotropic or specially orthotropic materials. Three types of thickness variations are considered, namely linear, exponential and sinusoidal along the radial direction of the conical shell structure. The equations of motion of the conical shell frusta are formulated using Love's first approximation theory along with the fluid interaction. Velocity potential and Bernoulli's equations have been applied for the expression of the pressure of the fluid. The fluid is assumed to be incompressible, inviscid and quiescent. The governing equations are modified by applying the separable form to the displacement functions and then it is obtained a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by cubic and quintics splines along with the boundary conditions to get generalized eigenvalue problem. The generalized eigenvalue problem is solved numerically for frequency parameters and then associated eigenvectors are calculated which are spline coefficients. The vibration of the shells with the effect of fluid is analyzed for finding the frequency parameters against the cone angle, length ratio, relative layer thickness, number of layers, stacking sequence, boundary conditions, linear, exponential and sinusoidal thickness variations and then results are presented in terms of tables and graphs.

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF

The Electronic Structure Calculations for Transition Metal Substituted Ge Chain Clusters (자성 원자를 치환한 1차원 클러스터의 전자구조 및 자성구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.157-160
    • /
    • 2009
  • We have studied electronic structures and magnetic properties of one dimensional Ge chain nanoclusters using OpenMX method based on densty functional method. The calculation results show the strong antiferromagnetic interaction between Cr and Ge atoms. The magnetic interaction between Ge and Ge atoms are almost antiferromagnetic behaviors. The magnetic exchange interaction are occurred over the sevaral Ge atom layers. The magnitude of this interaction depends number of Ge atom.

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).