• Title/Summary/Keyword: Interaction Parameter

Search Result 562, Processing Time 0.036 seconds

Calculation of Interaction Parameters in Mixed Layer Minerals and their Application (층상형 혼합광물의 상호작용계수의 계산 및 응용)

  • 이성근;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • Based on the method of determination for relative stability of each phase from the difference among the interaction parameters of the phases consisting the mixed layer, the types of interactions between layers were specified and interaction parameter between layers in ordered domain was analytically derived as a function parameter between layers in ordered domain was analytically derived as a function of not only temperature and mole fraction of layers but also ordering parameter. Interaction parameter between the different layers in ordered phase, L is as follows:{{{{ {L }_{1 } (X,Q,T)= { C} over { Q} -4(1-2Q) { L}^{2 } - { RT} over {2} ln { 1} over {2 } - { 2RT} over { { X}_{ s} } ln { { 4QX}`_{s } ^{2 } } over {(1- { X}_{s }- { QX}_{s })( { X}_{s }- {QX }_{s } ) } }}}}L2 is the interaction parameter between ordered and disordered phase in domain and is the mole fraction of the domain which represent the infinite length of mixed layer mineral and Q and C are the reaction progress parameter and arbitrary constant, respectively. This equation was used for the I/S mixed layer clay minerals to infer the relative stability of R1 type I/S mixed layer in the temperature range from 373K to 450K. The result of calculation suggest that, owing to the decrease in interaction parameter with increasing temperature. The interaction parameter decreases more rapidly with decreasing mole fraction of smectite in domain, which is consistent with the fact that the probability of finding the series smectite layer is lo in the domain with small mole fraction of smectite layers in natural system.

  • PDF

Gate-Controlled Spin-Orbit Interaction Parameter in a GaSb Two-Dimensional Hole gas Structure

  • Park, Youn Ho;Koo, Hyun Cheol;Shin, Sang-Hoon;Song, Jin Dong;Kim, Hyung-Jun;Chang, Joonyeon;Han, Suk Hee;Choi, Heon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.382-383
    • /
    • 2013
  • Gate-controlled spin-orbit interaction parameter is a key factor for developing spin-Field Effect Transistor (Spin-FET) in a quantum well structure because the strength of the spin-orbit interaction parameter decides the spin precession angle [1]. Many researches show the control of spin-orbit interaction parameter in n-type quantum channels, however, for the complementary logic device p-type quantum channel should be also necessary. We have calculated the spin-orbit interaction parameter and the effective mass using the Shubnikov-de Haas (SdH) oscillation measurement in a GaSb two-dimensional hole gas (2DHG) structure as shown in Fig 1. The inset illustrates the device geometry. The spin-orbit interaction parameter of $1.71{\times}10^{11}$ eVm and effective mass of 0.98 $m^0$ are obtained at T=1.8 K, respectively. Fig. 2 shows the gate dependence of the spin-orbit interaction parameter and the hole concentration at 1.8 K, which indicates the spin-orbit interaction parameter increases with the carrier concentration in p-type channel. On the order hand, opposite gate dependence was found in n-type channel [1,2]. Therefore, the combined device of p- and n-type channel spin transistor would be a good candidate for the complimentary logic device.

  • PDF

Equivalent Physical Damping Parameter Estimation for Stable Haptic Interaction (안정적인 햅틱 상호작용을 위한 등가 물리적 댐핑 추정)

  • Kim, Jong-Phil;Seo, Chang-Hhoon;Ryu, Je-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • This paper presents offline estimation of equivalent physical damping parameter in haptic interaction systems where damping is the most important parameter for stability. Based on the previous energy bounding algorithm, an offline procedure is developed in order to estimate the physical damping parameter of a haptic device by measuring energy flow-in to the haptic device. The proposed method does not use force/torque sensor at the handgrip. Numerical simulation and experiments verified effectiveness of the proposed method.

  • PDF

Evaluation of interfacial tension for poly(methyl methacrylate) and polystyrene by rheological measurements and interaction parameter of the two polymers

  • Sung, Y.T.;Seo, W.J.;Kim, Y.H.;Lee, H.S.;Kim, W.N.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.135-140
    • /
    • 2004
  • Morphological and rheological properties of the poly(methyl methacrylate) (PMMA) and polystyrene (PS) blends were studied by scanning electron microscopy (SEM) and advanced rheometric expansion system (ARES). From the SEM results, the PMMA-PS blends showed dispersed morphology and the particle size of the dispersed phase was quite small (0.1~0.6 $\mu\textrm{m}$ compared with other immiscible polymer blends. Values of the interfacial tension of the PMMA-PS blend were obtained from the Choi-Schowalter and the Palierne emulsion models using the storage modulus of the PMMA and PS, and found to be 1.0 and 2.0 mN/m, respectively. The interfacial tension between the PMMA and PS was also calculated from the Flory-Huggins polymer-polymer interaction parameter ($\chi$) and found to be from 0.98 to 1.86 mN/m depending on the molecular weight and composition. Comparing the values of the interfacial tension from the Flory-Huggins polymer-polymer interaction parameter and the values measured by oscillatory rheometer, it is suggested that the interfacial tension of the PMMA-PS blend obtained from the polymer-polymer interaction parameter are in good agreement with the values obtained by rheological measurements.

Estimation of Interaction Parameter of FeCl+ from Hydrochloric Acid Solution by Solvent Extraction with Amine

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3429-3432
    • /
    • 2011
  • Distribution diagram of $FeCl_2$ in HCl solution indicated that $FeCl^+$ was a predominant species in strong HCl solution up to 10 M. Solvent extraction of $FeCl_2$ has been performed in the HCl concentration range from 5 to 9 M by using Alamine336 as an extractant. Interaction parameter of $FeCl^+$ for Bromley equation was estimated from our solvent extraction data. This parameter thus obtained in our study can be employed in calculating the activity coefficient of $FeCl^+$ in high concentration of HCl.

Influence of Chlorine Treatment on Measurement of Crosslink Density of Wiper Blade

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.229-234
    • /
    • 2020
  • Automobile wiper blades are generally treated with chlorine to lower their friction coefficient with the windshield surface. This treatment could affect the crosslink density measurement of rubber vulcanizates, a material used in windshield wipers, which would consequently alter its chemical and physical properties. Therefore, this study evaluated the influence of chlorination on crosslink density measurements of natural rubber (NR) vulcanizates using a vehicle wiper blade. A method for determining the degree of chlorination was developed where the interaction parameter between the rubber and the swelling solvent was corrected. A decrease in the rubber sample swelling ratio was observed upon chlorination, and the chlorination penetrated less than 1% of the sample thickness. The chlorinated NR was assumed to be chloroprene rubber (CR), which was used to correct the interaction parameter. The results showed the CR contributed approximately 7% to the parameter.

Interaction between Particle with Dual Ligand and Cell under Flow (유동장내 길이가 다른 두 개의 리간드가 부착된 입자-세포간 상호작용)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.71-80
    • /
    • 2022
  • The interaction between dual-ligand decorated particle-based delivery system and target cell under shear flow is predicted using probability model developed. We assumed the two kinds of ligand are decorated on the surface of the particle with 10% length difference. Fixed with other biophysical parameters, a study on the particle-cell interaction for the different non-specific interaction parameter is performed. To induce the firm adhesion, short ligand-receptor should be engaged. Also, it is shown that the rational design of ligand-receptor interaction, including receptor number, specific interaction parameter, kinds of ligand-receptor, etc., should be considered.

Outlying Cell Identification Method Using Interaction Estimates of Log-linear Models

  • Hong, Chong Sun;Jung, Min Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.291-303
    • /
    • 2003
  • This work is proposed an alternative identification method of outlying cell which is one of important issues in categorical data analysis. One finds that there is a strong relationship between the location of an outlying cell and the corresponding parameter estimates of the well-fitted log-linear model. Among parameters of log-linear model, an outlying cell is affected by interaction terms rather than main effect terms. Hence one could identify an outlying cell by investigating of parameter estimates in an appropriate log-linear model.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Estimation of the Heat Budget Parameter in the Atmospheric Boundary Layer considering the Characteristics of Soil Surface (지표면의 특성을 고려한 대기경계층내의 열수지 parameter 추정 -열수지 parameter를 이용한 중규모 순환의 수치예측-)

  • 이화운;정유근
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.727-738
    • /
    • 1996
  • An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of Tf(foliage temperature), Tg(ground temperature), and qg(ground specific humidity). The model was verilied by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soil(sand and peat), the change for shielding factor, and the change for a kind of vegetation.

  • PDF