• Title/Summary/Keyword: Interaction Mechanism

Search Result 1,499, Processing Time 0.024 seconds

FREQUENCY SPECTRUM ANALYSIS OF ACOUSTIC EMISSION OF HARD DISK DRIVE HEAD/DISK INTERACTION

  • Chung, K.H.;Oh, J.K.;Moon, J.T.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.273-274
    • /
    • 2002
  • In order to evaluate the flying characteristics of slider, the acoustic emission (AE) as well as friction signals are typically utilized. In this work the frequency spectrum analysis is performed using the AE signal obtained during the head/disk interaction such as load/unload mechanism using ramp, impact situation in the presence of a bump on disk surface and other contact phenomena including particle interaction. It was shown that the influence of impact can be characterized effectively in the AE frequency spectrum. As a result of this work, frequency spectrum analysis will be utilized with better understanding for studying the head/disk interface (HDI) characteristics and monitoring the particle interaction in HDI effectively.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Spectroscopic Studies on the Interaction of N-alkyl Phenothiazines with Bovine Serum Albumin

  • Seetharamappa, J.;Shaikh, S.M.T;Kamat, B.P.
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Binding of N-Alkyl phenothiazines (NAP) to bovine serum albumin (BSA) was studied by spectroscopic methods.It was found that the phenothiazine ring common to all drugs makes major contribution to interaction. However, the nature of alkylamino group at position 10 influences the protein binding significantly. Stern-Volmer plots indicated the presence of static component in the quenching mechanism. The high magnitude of rate constant of quenching indicated that the process of energy transfer occurs by intermolecular interaction and thus the drug-binding site is in close proximity to tryptophan residues of BSA. Binding studies in presence of hydrophobic probe, 8-anilino-1-naphthalein-sulphonic acid showed that there is hydrophobic interaction between drug and the probe and they do not share common sites in BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of NAP to BSA predominantly involve hydrophobic forces. The effects of some cations and anions common ions were investigated on NAP-BSA interactions. The CD spectrum of BSA in presence of drug showedthat binding of drug leads to change in the helicity of the protein.

  • PDF

Magnetic Interaction Effect on Activation Volume and Area of CoPt Magnetic Films (자성막 CoPt의 자기상호작용이 활성화 부피와 면적에 미치는 영향)

  • Kim, Hyeon Soo;Jeong, Soon Young;Suh, Su Jeong
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.188-192
    • /
    • 2013
  • The magnetic interaction effect on the magnetic activation volume and area of electrodeposited CoPt magnetic films was investigated. The dipolar interaction was predominant interaction mechanism for all samples. And the interaction strength was increased with decreasing current density and increased with increasing sample thickness. Although the activation volumes of the samples fabricated at low current density were larger than those of the high current density samples, the sample thickness seemed to have little influence on the variation of activation volume. But it was found that the activation area was apparently affected by the magnetic interaction strength as well as the current density.

2-D Inviscid Analysis of Flow in One Stage of Axial Compressor (1단 축류압축기 내부 유동의 2차원 비점성 해석)

  • Kim HyunIl;Park JunYoung;Baek JeHyun;Jung HeeTaek
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.38-46
    • /
    • 2000
  • It has been indicated that the rotor/stator interaction has distinct causes of unsteadiness, such as the viscous vortex shedding, wake/stator interaction and potential rotor/stator interaction. In this paper, the mechanism of unsteady potential interaction in one stage axial compressor is numerically investigated for blade row ratio 1:1 and 2:3 at design point and for blade row ratio 2:3 at off-design point in two-dimensional view point. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting(FVS) and Cubic spline interpolation is applied on zonal interface. In this study the flow unsteadiness due to potential interaction are found to be larger in blade row ratio 2:3 than in 1:1. The total pressure rise in blade row ratio 2:3 is closer to the real value in design point than that in 1:1. The change of unsteady pressure amplitude according to the variation of stator exit pressure is very small.

  • PDF

Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. However, there is still a lack of knowledge of lateral behavior of digging well foundation considering the soil-foundation interaction. In this study, scaled models of bridge pier-digging well foundation system are constructed for quasi-static test to investigate their lateral behaviors. The failure mechanism and responses of the soil-foundation-pier interaction system are analyzed. The testing results indicate that the digging foundations tend to rotate as a rigid body under cyclic lateral load. Moreover, the depth-width ratio of digging well foundation has a significant influence on the failure mode of the interaction system, especially on the distribution of foundation displacement and the failure of pier. The energy dissipation capacity of the interaction system is discussed by using index of the equivalent viscous damping ratio. The damping varies with the depth-width ratio changing. The equivalent stiffness of soil-digging well foundation-pier interaction system decreases with the increase of loading displacement in a nonlinear manner. The absolute values of the interaction system stiffness are significantly influenced by the depth-width ratio of the foundation.

Survival of APC-mutant colorectal cancer cells requires interaction between tankyrase and a thiol peroxidase, peroxiredoxin II

  • Kang, Dong Hoon;Lee, Joanna H.S.;Kang, Sang Won
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.391-392
    • /
    • 2017
  • Overexpression of mammalian 2-Cys peroxiredoxin (Prx) enzymes is observed in most cancer tissues. Nevertheless, their specific roles in colorectal cancer (CRC) progression has yet to be fully elucidated. Here, a novel molecular mechanism by which PrxII/Tankyrase (TNKS) interaction mediates survival of adenomatous polyposis coli (APC)-mutant CRC cells was explored. In mice with an inactivating APC mutation, a model of spontaneous intestinal tumorigenesis, deletion of PrxII reduced intestinal adenomatous polyposis and thereby increased survival. In APC-mutant human CRC cells, PrxII depletion hindered PARP-dependent Axin1 degradation through TNKS inactivation. $H_2O_2-sensitive$ Cys residues in the zinc-binding domain of TNKS1 was found to be crucial for PARsylation activity. Mechanistically, direct binding of PrxII to ARC4/5 domains of TNKS conferred vital redox protection against oxidative inactivation. As a proof-of-concept experiment, a chemical compound targeting PrxII inhibited the growth of tumors xenografted with APC-mutation-positive CRC cells. Collectively, the results provide evidence revealing a novel redox mechanism for regulating TNKS activity such that physical interaction between PrxII and TNKS promoted survival of APC-mutant colorectal cancer cells by PrxII-dependent antioxidant shielding.

Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination

  • Hahm, Ja Young;Kang, Joo-Young;Park, Jin Woo;Jung, Hyeonsoo;Seo, Sang-Beom
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.112-117
    • /
    • 2020
  • A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylation-induced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway.

Design and Evaluation of the Unmanned Technology Research Center Exoskeleton Implementing the Precedence Walking Assistance Mechanism

  • Cha, Dowan;Oh, Sung Nam;Lee, Hee Hwan;Kim, Kyung-Soo;Kim, Kab Il;Kim, Soohyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2376-2383
    • /
    • 2015
  • Assistance of the operator’s walking ability while carrying a load is a challenging area in lower limb exoskeletons. We implement an exoskeleton called the Unmanned Technology Research Center Exoskeleton (UTRCEXO), which enables the operator to walk with a load more comfortably. The UTRCEXO makes use of two types of DC motor to assist the hip and knee joints. The UTRCEXO detects the operator’s walking intention including step initiation with insole-type FSRs faster without using any bio-signals and precedes the operator’s step with a reference torque. It not only reduces interaction forces between the operator and the UTRCEXO, but also allows the operator to walk with a load more comfortably. In this paper, we present the UTRCEXO implementing the walking assistance mechanism with interaction force reduction during walking.

Analysis of the Phase Change Temperatures and the Latent Heat Characteristics of $H_2O$-NaCl Mixtures for the Cold thermal Energy Storage (냉축열을 위한 $H_2O$-NaCl 혼합물의 상변화 온도와 잠열 특성분석)

  • Song, H.K.;Ro, J.G.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 1999
  • In this study $H_2O$-NaCl mixture was selected as a cold thermal storage material and its phase change temperature($liquid{\Leftrightarrow}solid$) was controlled with the molar concentration of NaCl. Ion dipole interaction mechanism and the fusion and crystallization structure of $H_2O$-NaCl were visualized with the low and high concentration of NaCl in the heating and cooling processes. In this study, the original cause of the appearance of two steps phase change period in heating and cooing processes were found by the visualization of the ion dipole interaction mechanism of $H_2O$-NaCl, and the theoretical equation of the phase change temperature variation in the NaCl high molar concentration was rearranged.

  • PDF