• 제목/요약/키워드: Interaction Matrix

검색결과 532건 처리시간 0.023초

도착시간지연 특성행렬을 이용한 휴머노이드 로봇의 공간 화자 위치측정 (Spatial Speaker Localization for a Humanoid Robot Using TDOA-based Feature Matrix)

  • 김진성;김의현;김도익;유범재
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.237-244
    • /
    • 2008
  • Nowadays, research on human-robot interaction has been getting increasing attention. In the research field of human-robot interaction, speech signal processing in particular is the source of much interest. In this paper, we report a speaker localization system with six microphones for a humanoid robot called MAHRU from KIST and propose a time delay of arrival (TDOA)-based feature matrix with its algorithm based on the minimum sum of absolute errors (MSAE) for sound source localization. The TDOA-based feature matrix is defined as a simple database matrix calculated from pairs of microphones installed on a humanoid robot. The proposed method, using the TDOA-based feature matrix and its algorithm based on MSAE, effortlessly localizes a sound source without any requirement for calculating approximate nonlinear equations. To verify the solid performance of our speaker localization system for a humanoid robot, we present various experimental results for the speech sources at all directions within 5 m distance and the height divided into three parts.

  • PDF

기업포탈사이트 업무화면 설계 프로세스 방법론 - 보험사의 프로젝트 진행 사례를 중심으로 (Process Methology of Designing User Interface in Enterprise Portal)

  • 권숙경
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 2부
    • /
    • pp.310-316
    • /
    • 2008
  • 국내외 기업들이 기업포탈(Enterprise Portal)에 대한 관심이 높아지연서 사용자 인터페이스(User Interface)에 대한 중요성이 인식되고 있다. 본 논문에서는 기업포탈(Enterprise Portal)에 대하여 살펴보고, 현행시스템에 대한 사용자의 개선요구사항을 조사, 분석하였다. 사용자 분석결과와 Checklist 평가를 통하여 UI Checklist Matrix 를 작성하였다. Matrix 의 가로축은 사용자 요구분석결과인 Layout, Navigation, Information, Function, Visibility, Interaction 6 가지 항목으로 구성된다. 세로축은 학습성, 효율성, 정확성, 접근성, 일관성, 즉시성, 통합성, 개인화, 기술, 표준화 10 가지 항목이 있다. 가로와 세로 항목이 만나는 곳에 중요도를 표시하고 세부항목을 정의한다. Matrix 가 반영된 가이드라인을 작성하고 가이드라인에 따라 업무화면을 설계하고 Matrix 로 평가한다. 본 연구는 보험사의 차세대 시스템 구축 프로젝트에서 진행된 내용으로 1 년여 기간 동안 업무담당자들과 업무정의에서부터 긴밀한 협조 하에 진행되었다.

  • PDF

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.

상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측 (Protein-Protein Interaction Prediction using Interaction Significance Matrix)

  • 장우혁;정석훈;정휘성;현보라;한동수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.851-860
    • /
    • 2009
  • 최근 계산을 통한 단백질 상호작용 예측 기법 중, 단백질 쌍이 포함하고 있는 도메인들 사이의 관계에 중점을 둔 도메인 정보 기반 예측 기법들이 다양하게 제안되고 있다. 하지만, 다수의 도메인 쌍들이 상호작용에 기여하는 정도를 정밀하게 반영하는 계산 기법은 드문 실정이다. 본 논문에서는 단백질 상호작용에 있어 도메인 조합 쌍의 상호작용 영향력을 수치화하여 반영한 상호작용 중요도 행렬을 고안하고 이를 기반으로 한 단백질 상호작용 예측 시스템을 구현한다. 일반적인 도메인 조합 기법과 달리, 상호작용 중요도 행렬에서는 상호작용을 위한 도메인간의 협업 확률이 고려된 Weighted 도메인 조합과, 다수의 Weighted 도메인 조합 중 실제 상호작용 주체가 될 확률을 도메인 조합 쌍의 힘(Domain Combination Pair Power, DCPPW)으로 수치화한다. DIP과 IntAct에서 얻어온 S. cerevisiae의 단백질 상호작용 데이터와 Pfam-A 도메인 정보를 사용한 정확도 검증 결과, 평균 63%의 민감도와 94%의 특이도를 확인하였으며, 학습집단의 증가에 따른 안정적인 예측 정확도 향상을 보였다. 본 논문에서 구현한 예측 시스템과 학습 데이터는 웹(http://code.google.com/p/prespi)을 통하여 내려 받을 수 있다.

Effects of the Interaction between Intercalant and Matrix Polymer in Preparation of Clay-dispersed Nanocomposite

  • Ko, Moon-Bae;Kim, Jyunkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • 제8권3호
    • /
    • pp.120-124
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, styrenic polymers with different content of functional groups and two different organophilic clays (Cloisite(R) 25A and Cloisite(R)30A) with a twin screw extruder. Dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffraction method and a transmission electron microscope. It was found that if the interaction force between intercalant and matrix polymer is attractive, the matrix polymer intercalates more rapidly into the gallery of silicate layers. The faster intercalation of matrix polymer leads to the better dispersibility of silicate layers in the matrix polymer.

  • PDF

명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석 (Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements)

  • 윤정방;김두기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

Modification of Hydroxyapatite-gelatin Nanocomposite using Side Group Reaction of Ca2+-RCOO-

  • Chang, Myung-Chul;Yang, Hae-Kwon
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.72-77
    • /
    • 2012
  • In the preparation of a hydroxyapatite [HAp]/gelatin [GEL] nanocomposite, the GEL matrix in aqueous solution of $H_3PO_4$ was modified by the introduction of aspartic acid [Asp], asparagine [Asn], and glycine [Gly]. The addition of Asp, Asn and Gly greatly affected the slurry formation of HAp/GEL nanocomposite and the resulting dry body showed variations in toughness with the addition of the different amino acids. The introduction of Asn into HAp/GEL nanocomposite was effective for producing the organic-inorganic interaction between HAp and GEL, and caused the increase of toughness. The formation reaction of the modified HAP/GEL nanocomposites was investigated by using XRD and FT-IR. The organic-organic interaction between the GEL matrix and the additives of Asp, Asn and Gly was confirmed from FT-IR analysis, and the organic-inorganic interaction between HAp nanocrystallites and the modified GEL matrix was also discussed, using FT-IR spectra patterns. Nanocrystallites of HAp were covalently bound with the GEL macromolecules and differently influenced by the modification species of Asp, Asn, and Gly.

A Functional Matrix Approach to Pedagogical Enrichment of the Dispositional Core of Future Specialists' Experience of Social Interaction

  • Kovalenko, E.V.;Gubarenko, I.V.;Kovalenko, V.I.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.255-259
    • /
    • 2022
  • The new social reality emerging amid the global rise of communication links and integration processes acutely emphasizes the problems of communication in large and small social systems. The method of their communication becomes one of the keys to ensuring global security. It has become the mission of humanitarian education to prepare the younger generations for life in a changing world with no image of the future and increasing uncertainty. In psychological and pedagogical research, there is a growing scientific interest in the problems of interaction of the individual with the social environment. The mental trace of a person's practice in society shapes the experience of social interaction, which constitutes simultaneously the source, tool, and condition for the emergence and development of personality. The study outlines the methodological foundations for the study of individual experiences of social interaction. A hypothesis about the productivity of the functional matrix method is tested. Materials for the training of specialists in the humanities include interdisciplinary approaches to the study and transformation of the experience of social interaction and systematic methodology for the study of complex objects. Fundamental to the study is the systematic-dialectical method, and the matrix method is employed as the instrumental-technological method. The paper presents the results of a multidisciplinary overview of scientific literature concerning the essential characteristics and functions of social interaction and the respective experience. The overview points to the fragmented nature of scientific understanding of the elements of experience outside its integrity and systemic properties. Based on the formula "personality interacts with the social environment", the study presents an algorithm for the application of a systematic methodology for the study of complex objects, which made it possible to identify the system parameters of experience at three levels of cognition and develop the reference structural and functional matrices for the didactic system of its pedagogical enrichment.

Representative Volume Element Analysis of Fluid-Structure Interaction Effect on Graphite Powder Based Active Material for Lithium-Ion Batteries

  • Yun, Jin Chul;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, a finite element analysis approach is proposed to predict the fluid-structure interaction behavior of active materials for lithium-ion batteries (LIBs), which are mainly composed of graphite powder. The porous matrix of graphite powder saturated with fluid electrolyte is considered a representative volume element (RVE) model. Three different RVE models are proposed to consider the uncertainty of the powder shape and the porosity. P-wave modulus from RVE solutions are analyzed based on the microstructure and the interaction between the fluid and the graphite powder matrix. From the results, it is found that the large surface area of the active material results in low mechanical properties of LIB, which leads to poor structural durability when subjected to dynamic loads. The results obtained in this study provide useful information for predicting the mechanical safety of a battery pack.

시간지연이 있는 대규모 이산시간 시스템의 상태궤환 최적제어 (State feedback optimal control of large-scale discrete-time systems with time-delays)

  • 김경연;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.219-224
    • /
    • 1988
  • A decentralised computational procedure is proposed for the optimal feedback gain matrix of large-scale discrete-time systems with time-delays. The constant feedback gain matrix is computed from the optimal state and input trajectries obtained hierarchically by the interaction prediction method. All the calculation in this approach are done off-line. The resulting gains are optimal for all the initial conditions. The interaction prediction method is applied to time-delay large-scale systems with general structures by extending the dimensions of coupling matices. A numerical exampie illustrates the algorithm.

  • PDF