• Title/Summary/Keyword: Interacting multiple model (IMM)

Search Result 83, Processing Time 0.02 seconds

Quantitative Analysis of Automotive Radar-based Perception Algorithm for Autonomous Driving (자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석)

  • Lee, Hojoon;Chae, HeungSeok;Seo, Hotae;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents a quantitative evaluation method and result of moving vehicle perception using automotive radar. It is also important to analyze the accuracy of the perception algorithm quantitatively as well as to accurately percept nearby moving vehicles for safe and efficient autonomous driving. In this study, accuracy of the automotive radar-based perception algorithm which is developed based on interacting multiple model (IMM) has been verified via vehicle tests on real roads. In order to obtain experimental data for quantitative evaluation, Long Range Radar (LRR) has been mounted on the front of the ego vehicle and Short Range Radar (SRR) has been mounted on the rear side of both sides. RT-range has been installed on the ego vehicle and the target vehicle to simultaneously collect reference data on the states of the two vehicles. The experimental data is acquired in various relative positions and velocity, and the accuracy of the algorithm has been analyzed according to relative position and velocity. Quantitative analysis is conducted on relative position, relative heading angle, absolute velocity, and yaw rate of each vehicle.

Pre-processing Faded Measurements for Bearing-and-Frequency Target Motion Analysis

  • Lee, Man-Hyung;Moon, Jeong-Hyun;Kim, In-Soo;Kim, Chang-Sup;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.424-433
    • /
    • 2008
  • An ownship with towed array sonar (TAS) has limited maneuvers due to its dynamic feature, bearing and frequency measurements of a target which are not detected continuously but are often lost in ocean environment. We propose a pre-processing algorithm for the faded bearing and frequency measurements to solve the BFTMA problem of TAS under limited detection conditions. The proposed pre-processing algorithm to restore the faded bearing and frequency measurements is implemented to perform a BFTMA filter even if the measurements of a target are not continuously detected. The Modified Gain Extended Kalman Filter (MGEKF) method based on the Interacting Multiple Model (IMM) structure is applied for a BFTMA filter algorithm to estimate the target. Simulations for the various conditions were carried out to verify the applicability of the proposed algorithms, and confirmed superior estimation performance compared with the existing Bearings-Only TMA (BOTMA).

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.