Journal of Institute of Control, Robotics and Systems
/
v.14
no.8
/
pp.733-739
/
2008
This article proposes algorithms for the automatic initiation of the tracks of maneuvering targets in cluttered environments. These track initiation algorithms consist of IPDA-AI(Integrated Probabilistic Data Association-Amplitude Information) and MPDA(Most Probable Data Association) in an Interacting Multiple Model(IMM) configuration, and they are referred to as the IMM-IPDAF-AI and IMM-MPDA respectively. The IMM portion consists of several filters based on different dynamical models to handle target maneuvers. Each of the filters utilizes an IPDA-AI(or MPDA) algorithm to deal with the problem of track existence in the presence of clutter. Although the primary purpose of this study is to deal with the track initiation problem, the IMM-IPDAF-AI and IMM-MPDA can also be used for the maintenance of existing tracks and the termination of tracks for targets when they disappear. For illustrative purposes, simulation is used to compare the performance of the algorithms proposed to other track formation algorithms.
Data Fusion algorithm is essential in Target Detection using radar, and it has more reliability. In this paper, Multi Radar Fusion algorithm using IMM(Interacting Multiple Model) filter is suggested. This well-known IMM filter has better performance than Kalman filter has. In this simulation, Distributed Data Fusion process was applied, and three sub-filters and one main filter were employed. In addition, this simulation was evaluated by virtual radar data which include constant velocity, constant accelerate, turn rate. The result of an evaluation shows better performance in the maneuvering section of aircraft.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.5
/
pp.641-647
/
2009
In this paper, a new filtering scheme for adaptive cruise control (ACC) system is presented. In the proposed scheme, the identification of the mode of the preceding vehicle is considered as a classification problem and it is done by a neural network classifier. The neural network classifier outputs a posterior probability of the mode of the preceding vehicle and the probability is directly used in the IMM framework. Finally, ten scenarios are made and the proposed NIMM is tested on them to show its validity.
Barometers can provide height information steady but its accuracy becomes poor as the air data varies due to the vehicles's moving or time's elapsing. In order to keep the accuracy in spite of the air data changes, we propose a filter for the identification of baro-errors. The baro-errors mainly consist of bias and scale factor errors which gradually varies as the air data varies. With GPS height measurements, the scale factor and bias estimator is designed by applying the interacting multiple model (IMM) filtering technique to the baro-error random walk model. The resultant estimates are used to compensate current baro-measurement to supply accurate measurements steadily.
Transactions of the Korean Society of Mechanical Engineers A
/
v.29
no.1
s.232
/
pp.139-144
/
2005
A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.
Journal of the Korea Institute of Military Science and Technology
/
v.7
no.4
s.19
/
pp.5-12
/
2004
The tracking algorithm based on the interacting multiple model(IMM) requires a considerable number of sub-models for the various maneuvering targets in order to have a good performance. But it is not feasible to use the nm algorithm in the real system because of the computational burden. Therefore, we need an algorithm which requires less computing resources while maintaining a good performance. In this paper, we propose a fuzzy interacting multiple model algorithm(FIMMA) for the tracking of maneuvering targets, which uses a minimal number of sub-models by considering the maneuvering properties and adjusts the mode transition probabilities by using the mode probability as a fuzzy input. In order to verify the performance of FIMMA, the developed algorithm is applied to the tracking of i borne targets. Simulation results show that the FIMMA is very effective in the tracking of maneuvering targets.
In this study, we introduce an interactive multi-model-probabilistic data association filter (IMM-PDAF), a multi-target tracking algorithm that integrates multiple dynamic models for accurate real-time maritime target tracking. Multi-target tracking in the maritime environment requires high accuracy due to the complex dynamic environment and various movement patterns. The existing CV-PDAF (constant velocity model) and CT-PDAF (circling model) each assume a constant movement pattern, but it is difficult to handle all the complex movements occurring in various maritime environments with these single models. To solve this problem, this study proposes an interactive multi-model-probabilistic data association filter (IMM-PDAF), and the results of this paper applied to maritime RADAR data show that the proposed IMM-PDAF has relatively lower RMSE values than CV-PDAF and CT-PDAF, and has strong positioning performance even in complex dynamic environments. Therefore, this study results highlight the potential of the proposed IMM-PDAF to improve the reliability and efficiency of maritime surveillance systems and provide a multi-target tracking solution for complex tracking environments.
CNS/ATM(Communication Navigation Surveillance/Air Traffic Management) was adopted as a standard navigation system of 21st century. Therefore, ICAO(International Civil Aviation Organization) members are developing the technology and infrastructure of CNS/ATM. ADS-B(Automatic Dependent Surveillance-Broadcast) system and Multilateration system are being implemented in the surveillance field of CNS/ATM. Multilateration system is installed in order to complement radar system and to surveil blind areas. Also, Multilateration system using TDOA(Time Difference Of Arrival) is more accurate than radar. In this paper, we applied an IMM(Interacting Multiple Model) filter which is widely used in radar systems to the Multilateration data in order to improve the reliability of the Multilateration data. Comparisons with the original Multilateration data and the Multilateration data with the IMM filter show that the ADS-B data with the IMM filter provides a better performance: 38.37% near the airport, 20.86% around 10 miles of the airport.
In this paper, it is shown that the dominant errors of baro-altimeters can be characterized by bias and scale factor errors. Also an optimal filter for estimating both bias and scale factor is derived based on the concept of model transition. The optimal filter is, however, not realizable because the model transition hypotheses increase exponentially. Therefore a realizable suboptimal filter using the interacting multiple model(IMM) technique is proposed. Computer simulation results show that the estimation errors of the proposed filter are smaller than those of the conventional least squares algorithm with a forgetting factor when both the bias and the scale factor are varying.
Journal of the Korea Institute of Military Science and Technology
/
v.8
no.3
s.22
/
pp.24-32
/
2005
This paper describes the tracking filter performance for Naval Gun Ballistic Computation Unit(BCU). BCU needs tracing filter for gun firing. Using data of tracking sensor, BCU calculates the future position of Target and Gun order in the time of flight. In this paper, tracing filter is designed with interacting multiple model(IMM). The tracking algorithm based on the IMM requirers a considerable number of sub-model for the various maneuvering target in order to have a good performance. But, in the case of ship target, the maneuvering is restricted compared with the air target. Considering the maneuvering properties and adjusting the mode transition probabilities and the process noise of sub-model, We designed the IMM3 algorithm for Naval tracking filter with three sub-model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.