• Title/Summary/Keyword: Interacting multiple model (IMM)

Search Result 83, Processing Time 0.034 seconds

Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise (혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상)

  • 강상기;백성준;이기용;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.387-393
    • /
    • 2002
  • The enhancement technique of noise signal using mixture HFM (Midden Filter Model) are proposed. Given the parameters of the clean signal and noise, noisy signal is modeled by a linear state-space model with Markov switching parameters. Estimation of state vector is required for estimating original signal. The estimation procedure is based on mixture interacting multiple model (MIMM) and the estimator of speech is given by the weighted sum of parallel Kalman filters operating interactively. Simulation results showed that the proposed method offers performance gains relative to the previous results with slightly increased complexity.

GA-Based IMM Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

A DNA Coding-Based Interacting Multiple Model Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 DNA 코딩 기반 상호작용 다중모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.87-91
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, a DNA coding-based interacting multiple model (DNA coding-based IMM) method is proposed. The proposed method can overcome the mathematical limits of conventional methods by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive IMM algorithm and the GA-based IMM method in computer simulations.

  • PDF

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

Tracking a constant speed maneuvering target using IMM method

  • Lee, Jong-hyuk;Kim, Kyung-youn;Ko, Han-seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.484-487
    • /
    • 1995
  • An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular like turning" trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this paper.his paper.

  • PDF

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.310-318
    • /
    • 2004
  • In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, an UKF is used because of the drawbacks of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

IMM Filterbank for Wideband-maneuvering Target Tracking (광대역 기동표적 대응 IMM 필터뱅크)

  • Lee, Jeong Cheor;Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.882-889
    • /
    • 2014
  • This paper deals with a filterbank based on the IMM (Interacting Multiple Model) that combines data from a sensor and uses them selectively depending on a level of maneuver. Furthermore, within the maneuver interval, the existing IMM filter has disadvantages such as unnecessary target estimation errors caused by using a constant velocity model and an increase of computation load because of a fixed structure. On the other hand, the proposed IMM filterbank overcomes these disadvantages by using three model groups and designs a filterbank to cope with a wideband-maneuvering target. The performances of the IMM filterbank was evaluated through comparison with the existing IMM via computer simulations. The results show good performances for a wideband-maneuvering target.

A Study of Target Motion Analysis For a Passive Sonar System with the IMM (IMM을 이용한 수동소나체계의 기동표적추적기법 향상 연구)

  • 유필훈;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.148-148
    • /
    • 2000
  • In this paper the IMM(Interacting Multiple model) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) which modes are variances of the process noises is proposed to enhance the performance of maneuvering target tracking with bearing and frequency measurements. The state are composed of relative position, relative velocity, relative acceleration and doppler frequency. The mode probability is calculated from the bearing and frequency measurements. The proposed algorithm is tested a series of computer simulation runs.

  • PDF

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

Adaptive Fuzzy IMM Algorithm for Position Tracking of Maneuvering Target (기동표적의 위치추적을 위한 적응 퍼지 IMM 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.855-861
    • /
    • 2007
  • In real system application, the IMM-based position tracking algorithm requires robust performance, less computing resources and easy design procedure with respect to the uncertain target maneuvering, To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the well-defined basis sub-models and well-adjusted mode transition probabilities (MTPs), is proposed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application of the IMM-based position tracking algorithm.