• Title/Summary/Keyword: Interactance configuration

Search Result 1, Processing Time 0.013 seconds

A Melon Fruit Grading Machine Using a Miniature VIS/NIR Spectrometer: 2. Design Factors for Optimal Interactance Measurement Setup

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Yoo, Soo-Nam;Choi, Yong-Soo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Purpose: In near infrared spectroscopy, interactance configuration of a light source and a spectrometer probe can provide more information regarding fruit internal attributes, compared to reflectance and transmittance configuration. However, there is no through study on the parameters of interactance measurement setup. The objective of this study was to investigate the effect of the parameters on the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from greenhouses at three different harvesting seasons. The prediction models were developed at three distances of 2, 5, and 8 cm between the light source and the spectrometer probe, three measurement points of 2, 3, and 6 evenly distributed on each sample, and different number of fruit samples for calibration models. The performance of the models was compared. Results: In the test at the three distances, the best results were found at a 5 cm distance. The coefficient of determination ($R_{cv}{^2}$) values of the cross-validation were 0.717 (standard error of prediction, SEP=$1.16^{\circ}Brix$) and 0.504 (SEP=4.31 N) for the estimation of SSC and firmness, respectively. The minimum measurement point required to fully represent the spectral characteristics of each fruit sample was 3. The highest $R_{cv}{^2}$ values were 0.736 (SEP=$0.87^{\circ}Brix$) and 0.644 (SEP=4.16 N) for the estimation of SSC and firmness, respectively. The performance of the models began to be saturated when 60 fruit samples were used for developing calibration models. The highest $R_{cv}{^2}$ of 0.713 (SEP=$0.88^{\circ}Brix$) and 0.750 (SEP=3.30 N) for the estimation of SSC and firmness, respectively, were achieved. Conclusions: The performance of the prediction models was quite different according to the condition of interactance measurement setup. In designing a fruit grading machine with interactance configuration, the parameters for interactance measurement setup should be chosen carefully.