• Title/Summary/Keyword: Inter-networks Interference

Search Result 97, Processing Time 0.023 seconds

Iterative Group Detection and Decoding for Large MIMO Systems

  • Choi, Jun Won;Lee, Byungju;Shim, Byonghyo
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.609-621
    • /
    • 2015
  • Recently, a variety of reduced complexity soft-in soft-output detection algorithms have been introduced for iterative detection and decoding (IDD) systems. However, it is still challenging to implement soft-in soft-output detectors for MIMO systems due to heavy burden in computational complexity. In this paper, we propose a soft detection algorithm for MIMO systems which performs close to the full dimensional joint detection, yet offers significant complexity reduction over the existing detectors. The proposed algorithm, referred to as soft-input soft-output successive group (SSG) detector, detects a subset of symbols (called a symbol group) successively using a deliberately designed preprocessing to suppress the inter-group interference. In fact, the proposed preprocessor mitigates the effect of the interfering symbol groups successively using a priori information of the undetected groups and a posteriori information of the detected groups. Simulation results on realistic MIMO systems demonstrate that the proposed SSG detector achieves considerable complexity reduction over the conventional approaches with negligible performance loss.

Computationally-Efficient Algorithms for Multiuser Detection in Short Code Wideband CDMA TDD Systems

  • De, Parthapratim
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper derives and analyzes a novel block fast Fourier transform (FFT) based joint detection algorithm. The paper compares the performance and complexity of the novel block-FFT based joint detector to that of the Cholesky based joint detector and single user detection algorithms. The novel algorithm can operate at chip rate sampling, as well as higher sampling rates. For the performance/complexity analysis, the time division duplex (TDD) mode of a wideband code division multiplex access (WCDMA) is considered. The results indicate that the performance of the fast FFT based joint detector is comparable to that of the Cholesky based joint detector, and much superior to that of single user detection algorithms. On the other hand, the complexity of the fast FFT based joint detector is significantly lower than that of the Cholesky based joint detector and less than that of the single user detection algorithms. For the Cholesky based joint detector, the approximate Cholesky decomposition is applied. Moreover, the novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system.

A Combination of CS-CDMA and OFDM for Enhanced LTE on Downlink Channel

  • Jiao, Bingli;Ma, Meng;Lee, William C.Y.
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • For alleviating the low spectrum efficiency problem of orthogonal frequency division multiplexing (OFDM), due to the strong inter-cell-interference (ICI) at cell's edge, we introduce comb-spectrum code division multiple access (CS-CDMA) into broadband OFDM system at downlink channel for enabling the use of entire spectrum for seamless coverage. In addition, we develop a new method, called orthogonal cell code (OCC) scheme, to assist CS-CDMA for nullifying the ICI from contiguous cells. In system operation, each of the conventional cells is divided into an outer cell and an inner cell, and a mobile station (MS) should access to the CS-CDMA when it is in the outer cell and access to OFDM when it is in the inner cell. This study investigates the spectrum efficiency of using CS-CDMA and makes a comparison with that of long term evolution (LTE) in the following cases; (1) under an assumption of perfect channel state information and (2) based on channel estimates at a MS station. The results show the great advantage of utilizing the proposed system.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

A Golden Coded-Spatial Modulation MIMO System (골든 부호 기반의 공간 변조 다중 안테나 시스템)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, the spatial modulation (SM) multi-input multi-output (MIMO) system is proposed for indoor wireless local area networks (WLANs) with improved spectral efficiency. SM is suitable for high speed WLANs with avoiding the inter channel interference (ICI). Only one transmit antenna is activated in SM at each symbol interval. Therefore, it fails to attain the maximum coding gain of MIMO. The space time block code (STBC)-SM MIMO system can attain the maximum diversity gain at the expense of spectral efficiency. The proposed Golden-SM MIMO system uses the Golden code to improve the coding gain and spectral efficiency at the same time. The Golden code is adapted for STBC-SM and it makes the new code book for transmission symbols. The performance of the proposed system is compared with the conventional systems with computer simulations.

Effect of transmit power on the optimal number of feedback bits in dense cellular networks (셀룰러 네트워크에서 송신파워가 최적의 피드백 정보량에 미치는 영향에 관한 연구)

  • Min, Moonsik;Na, Cheol-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.464-466
    • /
    • 2018
  • In this paper, a dense cellular network is considered in which each base station equipped with multiple antennas simultaneously communicates with multiple single-antenna users. Based on limited feedback, each user feeds back its quantized channel state information (CSI) to its associated transmitter, and the transmitter broadcasts multiple data streams prepared for the scheduled users using a space-division multiple access scheme. As the amount of CSI is limited at the transmitter, the downlink throughput increases with the number feedback bits. However, the increased number of feedback bits requires the correspondingly increased amount of uplink resources. Thus, an appropriate balance between the downlink throughput and the uplink resource usage should be considered in realistic systems. A net spectral efficiency defined in this context is used in this paper, and the optimal number of feedback bits that maximizes the net spectral efficiency is analyzed. This paper particularly focuses on the case when the received signal power is much smaller than the noise power.

  • PDF

Case Study for Ship Ad-hoc Networks under a Maritime Channel Model in Coastline Areas

  • Su, Xin;Yu, HaiFeng;Chang, KyungHi;Kim, Seung-Geun;Lim, Yong-Kon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4002-4014
    • /
    • 2015
  • ITU-R M.1842-1, as a well-known specification dedicated to maritime mobile applications, has standardized wireless transmission protocols according to the particular characteristics of a maritime communications scenario. A time division multiple access (TDMA) frame structure, along with modulation schemes to achieve a high data rate, has been described clearly in ITU-R M.1842-1. However, several specification items are still under "to be decided" status, which brings ambiguity to research works. In addition, the current version of ITU-R M.1842-1 is focused mainly on maritime transmissions in open-sea areas, where the cyclic prefix (CP) is set to zero and only 16-QAM is used in the multi-carrier (MC) system. System performance might be dramatically degraded in coastline areas due to the inter-symbol interference (ISI) caused by selective fading. This is because there is a higher probability that the signal will be reflected by obstacles in coastline areas. In this paper, we introduce the transmission resource block (TRB) dedicated to ITU-R M.1842-1 for a ship ad-hoc network (SANET), where the pilot pattern of TRB is based on the terrestrial trunked radio (TETRA). After that, we evaluated SANET performance under the maritime channel model in a coastline area. In order to avoid noise amplification and to overcome the ISI caused by selective fading, several strategies are suggested and compared in the channel estimation and equalization procedures, where the link-level simulation results finally validate our proposals.