• Title/Summary/Keyword: Inter-laminar strength

Search Result 14, Processing Time 0.015 seconds

Effects of salt water environment on the mechanical behavior of composites (복합재료의 기계적 거동에 염수환경이 미치는 영향에 관한 연구)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • In this paper, two different experiments, namely, salt water spray and salt water immersion, were performed to reproduce the contact of composites with the seawater for three kinds of woven fabric composite material systems which would be used for the WIG(wing in ground effect)craft. After aging 140 days in the salt water environment, material properties of carbon/epoxy and glass/epoxy composite such as tensile, compressive and shear stiffness and strength, and inter-laminar shear strength (ILSS) were measured. By comparing baseline material properties with degraded ones, the effects of the salt water environment on the composite mechanical properties were evaluated. From the experiments, it was confirmed that the difference in aging conditions had very small influence on composite properties. And it was found that tensile strength of carbon/epoxy composites showed little degradation, but much more degradation was observed in glass/epoxy composites. And large degradations on matrix dominant properties were observed. The salt water could damage the fiber-matrix interface, matrix properties and the glass fiber.

Fiber Loading Effect on the Interlaminar, Mechanical, and Thermal Properties of Novel Lyocell/Poly(butylene succinate) Biocomposites (새로운 라이오셀/poly(butylene succinate) 바이오복합재료의 층간전단, 기계적, 열적 특성에 미치는 섬유함량의 영향)

  • Lee, Jae Young;Kim, Jin Myung;Cho, Donghwan;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • In the present work, novel biocomposites made with biodegradable Lyocell woven fabrics and poly (butylene succinate) were successfully fabricated for the first time. Lyocell/poly(butylene succinate) biocomposites with different fiber loadings of 0, 30, 40, 50 and 60 wt% were prepared by compression molding with a sheet interleaving manner. The effect of Lyocell fabric loading on the interlaminar shear strength, tensile and flexural properties, heat deflection temperature, thermal expansion behavior, and thermal stability of the biocomposites was investigated. The properties strongly depended on the fabric loading and the results were consistent with each other. It was demonstrated that the Lyocell fabrics played a remarkable role in improving the properties of poly(butylene succinate) resin by incorporating the fabrics into the resin. The greatest inter-laminar, tensile, flexural and thermal properties of the biocomposites were obtained with Lyocell fabrics of 50% by weight.

  • PDF

Effect of Boron Nitride on Mechanical Properties, Thermal and Electrical Conductivities of Carbon Fiber Reinforced Plastics (탄소섬유강화 복합소재의 열적, 전기적, 기계적 특성에 대한 질화붕소 첨가제의 효과)

  • Hong, Hyunkee;Bae, Kwak Jin;Yu, Jaesang
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, hexagonal boron nitride (h-BN) particles were added between the sheets of prepreg, and the effect of on many properties of BN-embedded carbon fiber reinforced plastics was investigated. The amount of BN particles which corresponds with 0 to 15 wt% of total resin weight was used as an additive material. The tensile strength and the inter-laminar shear strength of BN-embedded CFRP samples were improved by maximally 13.6%, and 6.7%, respectively. The tendency changes of thermal, electrical conductivities and the morphology of cross-section of CFRPs were also observed. This study suggests the possibility of controlling the characteristics of carbon fiber-BN-epoxy composites to use for aerospace applications.

Progressive Damage Modeling of Inter and Intra Laminar Damages in Open Hole Tensile Composite Laminates (오픈 홀 인장 복합 재료 적층판에서 층간 및 내부 손상에 대한 점진적 손상 모델링)

  • Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Open-hole tensile tests are usually performed to measure the tensile strengths of composites as they are an essential parameter for designing composite structures. However, correctly modeling the tensile test is extremely challenging as it involves various damages such as fiber and matrix damage, delamination, and debonding damage between the fiber and matrix. Therefore, a progressive damage model was developed in this study to estimate the in-plane failure and delamination between the fiber and matrix. The Hashin damage model and cohesive zone approach were used to model ply and delamination failures. The results of the present model were compared with previously published experimental and numerical findings. It was observed that neglecting delamination during finite element analysis led to overestimation of tensile strength.