• Title/Summary/Keyword: Inter-correlation

Search Result 692, Processing Time 0.026 seconds

Sound Quality Enhancement in MPEG Surround by Using ILD Distortion (ILD DISTORTION을 이용한 MPEG SURROUND의 음질 개선)

  • Chon, Sang-Bae;Choi, In-Yong;Sung, Koeng-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.241-242
    • /
    • 2006
  • MPEG Surround is an audio coding technology that represents multi-channel audio signal with downmixed audio signal(s) and very low bitrate side information based on Binaural Cue Coding. The side information consists of Inter-Channel Level Difference, Inter-Channel Correlation, and payloads. These two parameters are correspondent to the well-known spatial parameters in psycho-acoustics, Inter-aural Level Difference (ILD) and Inter-Aural Cross Correlation (IACC). Though ICLD is to provide perceptually equivalent ILD to the listener, however, the ILD of the original multi-channel audio signal and that of the MPEG Surround encoded signal was different. The difference between two ILD values is defined as ILD Distortion (ILDD). This paper provides how ILDD can be applied to enhance sound quality in MPEG Surround and how much ILDD is decreased.

  • PDF

Effect of Capacitance Error on the A/D conversion Accuracy (커패시턴스 오차가 아날로그 디지털 변환의 정확도에 미치는 영향)

  • Lee, Yun-Tae;Kim, Chung-Gi;Gyeong, Jong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.57-61
    • /
    • 1985
  • The e(lect of capacitance error on the A/D conversion accuracy in the A/D converter using binary-weighted capacitor array was scruntized. Besides the Monte-Carlo method considering the inter-capacitance ratios as random variables, " correlation approach" con-sidering the correlation coefficient between capacitances is proposed in this paper. Bt was observed by the measurement of capacitances of monolithic MO5 capacitors that the correla-tion coefficient between capacitors decreases as the capacitor size incrrases. It was also verified that the parallel connection of unit capacitors and the common centroid layout scheme signi(icantly increase the inter-capacitance correlation coefficients.

  • PDF

A Fast Inter-prediction Mode Decision Algorithm for HEVC Based on Spatial-Temporal Correlation

  • Yao, Weixin;Yang, Dan
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • Many new techniques have been adopted in HEVC (High efficiency video coding) standard, such as quadtree-structured coding unit (CU), prediction unit (PU) partition, 35 intra-mode, and so on. To reduce computational complexity, the paper proposes two optimization algorithms which include fast CU depth range decision and fast PU partition mode decision. Firstly, depth range of CU is predicted according to spatial-temporal correlation. Secondly, we utilize the depth difference between the current CU and CU corresponding to the same position of adjacent frame for PU mode range selection. The number of traversal candidate modes is reduced. The experiment result shows the proposed algorithm obtains a lot of time reducing, and the loss of coding efficiency is inappreciable.

Comparison of Vendor-Provided Volumetry Software and NeuroQuant Using 3D T1-Weighted Images in Subjects with Cognitive Impairment: How Large is the Inter-Method Discrepancy?

  • Chung, Jieun;Kim, Hayoung;Moon, Yeonsil;Moon, Won-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.2
    • /
    • pp.76-84
    • /
    • 2020
  • Background: Determination of inter-method differences between clinically available volumetry methods are essential for the clinical application of brain volumetry in a wider context. Purpose: The purpose of this study was to examine the inter-method reliability and differences between the Siemens morphometry (SM) software and the NeuroQuant (NQ) software. Materials and Methods: MR images of 86 subjects with subjective or objective cognitive impairment were included in this retrospective study. For this study, 3D T1 volume images were obtained in all subjects using a 3T MR scanner (Skyra 3T, Siemens). Volumetric analysis of the 3D T1 volume images was performed using SM and NQ. To analyze the inter-method difference, correlation, and reliability, we used the paired t-test, Bland-Altman plot, Pearson's correlation coefficient, intraclass correlation coefficient (ICC), and effect size (ES) using the MedCalc and SPSS software. Results: SM and NQ showed excellent reliability for cortical gray matter, cerebral white matter, and cerebrospinal fluid; and good reliability for intracranial volume, whole brain volume, both thalami, and both hippocampi. In contrast, poor reliability was observed for both basal ganglia including the caudate nucleus, putamen, and pallidum. Paired comparison revealed that while the mean volume of the right hippocampus was not different between the two software, the mean difference in the left hippocampus volume between the two methods was 0.17 ml (P < 0.001). The other brain regions showed significant differences in terms of measured volumes between the two software. Conclusion: SM and NQ provided good-to-excellent reliability in evaluating most brain structures, except for the basal ganglia in patients with cognitive impairment. Researchers and clinicians should be aware of the potential differences in the measured volumes when using these two different software interchangeably.

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.100-108
    • /
    • 2014
  • A numerical analysis method for predicting aerodynamic noise at inter-coach space of high-speed trains, validated by wind-tunnel experiments for limited speed range, is proposed. The wind-tunnel testing measurements of the train aerodynamic sound pressure level for the new generation Korean high-speed train have suggested that the inter-coach space aerodynamic noise varies approximately to the 7.7th power of the train speed. The observed high sensitivity serves as a motivation for the present investigation on elucidating the characteristics of noise emission at inter-coach space. As train speed increases, the effect of turbulent flows and vortex shedding is amplified, with concomitant increase in the aerodynamic noise. The turbulent flow field analysis demonstrates that vortex formation indeed causes generation of aerodynamic sound. For validation, numerical simulation and wind tunnel measurements are performed under identical conditions. The results show close correlation between the numerically derived and measured values, and with some adjustment, the results are found to be in good agreement. Thus validated, the numerical analysis procedure is applied to predict the aerodynamic noise level at inter-coach space. As the train gains speed, numerical simulation predicts increase in the overall aerodynamic sound emission level accompanied by an upward shift in the main frequency components of the sound. A contour mapping of the aerodynamic sound for the region enclosing the inter-coach space is presented.

Efficient Mode Decision Algorithm Based on Spatial, Temporal, and Inter-layer Rate-Distortion Correlation Coefficients for Scalable Video Coding

  • Wang, Po-Chun;Li, Gwo-Long;Huang, Shu-Fen;Chen, Mei-Juan;Lin, Shih-Chien
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.577-587
    • /
    • 2010
  • The layered coding structure of scalable video coding (SVC) with adaptive inter-layer prediction causes noticeable computational complexity increments when compared to existing video coding standards. To lighten the computational complexity of SVC, we present a fast algorithm to speed up the inter-mode decision process. The proposed algorithm terminates inter-mode decision early in the enhancement layers by estimating the rate-distortion (RD) cost from the macroblocks of the base layer and the enhancement layer in temporal, spatial, and inter-layer directions. Moreover, a search range decision algorithm is also proposed in this paper to further increase the motion estimation speed by using the motion vector information from temporal, spatial, or inter-layer domains. Simulation results show that the proposed algorithm can determine the best mode and provide more efficient total coding time saving with very slight RD performance degradation for spatial and quality scalabilities.

Reliability and validity of rasterstereography measurement for spinal alignment in healthy subjects

  • Yi, Yoon-Sil;Yoo, Seul-Ki;Lee, Da-Gam;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Objective: The Back Mapper is one type of Rasterstereography and it can be used in the clinic without radiation exposure. The purpose of our study was to prove the reliability and validity of the Back Mapper and to compare it with the Spinal Mouse, which is an assessment tool for spinal curvatures using a wheeled mouse, and the Cobb angle by X-ray. Design: Cross-sectional study. Methods: Twenty healthy adults participated in the test to investigate for the inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with assessment devices for scoliosis such as the Back Mapper, Spinal Mouse and Cobb's angle. Data was analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement for reliability and correlation analysis for validity. Results: Intra-rater reliability of the Back Mapper was good (Cronbach's ${\alpha}$=0.821-0.984, ICC=0.696-0.969) except for assessing the lordotic angle. Inter-rater reliability was good (Cronbach's ${\alpha}$=0.870-0.958, ICC=0.770-0.919) in assessment for trunk imbalance, rotation of scapulae, thoracic angle, lumbar angle, and kyphotic angle. The kyphotic angle in the Spinal Mouse had a significant correlation icompared with the Back Mapper (r=0.510, p<0.05), and the Cobb's angle from an X-ray had a significant correlation with trunk inclination (r=0.532, p<0.05). Conclusions: These findings provide good intra-reliability of the Back Mapper in healthy subjects, but the Back Mapper requires more experienced practice to have good inter-reliability. Also, the variables of the Back Mapper does not seem as appropriate compared with the Cobb angle by X-ray.

An Evaluation of the Reliability and Validity of the Automatic Pennation Angle Measuring Program (깃각 자동측정 프로그램의 신뢰도와 타당도 평가)

  • Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.329-337
    • /
    • 2019
  • Purpose: Ultrasound imaging is commonly used to measure the pennation angle of human skeletal muscles in vivo. However, manual assessment of the pennation angle using ultrasound images is subjective and time-consuming and requires a high level of examiner skill. The architectural analysis of human skeletal muscles is thus challenging. Automated approaches using image processing techniques are therefore required to estimate the pennation angle in ultrasound images. The purpose of this study was thus to assess the intra-tester and inter-tester reliability and validity of the pennation angle using an automatic measurement program. Methods: Twenty-two healthy young adults (mean age = 22.55 years) with no medical history of neurological or musculoskeletal disorders voluntarily participated in this study. Ultrasound imaging was used to measure the pennation angle of the gastrocnemius muscle at rest. One examiner acquired images from all the participants. The intra-tester and inter-tester reliability were evaluated using the intraclass correlation coefficient (ICC) to estimate reliability. Validity was measured using Pearson's correlation coefficient. Results: The intra-rater reliability was excellent for the automatic pennation angle measuring program and the manual pennation angle assessment method (ICC>0.95). The inter-rater reliability was also excellent for both methods (ICC>0.93). All the correlation coefficients for the automatic pennation angle measuring program and the manual pennation angle assessment method were 0.79, which indicated a significantly positive correlation (p<0.05). Conclusion: Pennation angle measurement using the automatic pennation angle measuring program showed acceptable reliability and validity. This study therefore demonstrated that the automatic measuring program was able to automatically measure the pennation angle of skeletal muscles using ultrasound images, and thus made it easy to investigate skeletal muscle architecture.

A Three-Step Mode Selection Algorithm for Fast Encoding in H.264/AVC (H.264/AVC에서 빠른 부호화를 위한 3단계 모드 선택 기법)

  • Jeon, Hyun-Gi;Kim, Sung-Min;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • The H.264/AVC provides gains in compression efficiency of up to 50% over a wide range of bit rates and video resolutions compared to previous standards. However, to achieve such high coding efficiency, the complexity of H.264/AVC encoder is also increased drastically than previous ones, mainly because of mode decision. In this paper, we propose a three-step mode decision algorithm for fast encoding in H.264/AVC. In the first step, we select skip mode or inter mode by considering the temporal correlation and spatial correlation. In the second step, if the result of the first step is INTER mode, we select one group between two groups for final mode. In the third step, we select final mode by exploiting the pixel values of error macroblock or the modes of adjacent macroblocks. Simulations show that the proposed method reduces the encoding time by 42% on average without any significant PSNR losses.

  • PDF