• Title/Summary/Keyword: Inter-calibration

Search Result 210, Processing Time 0.029 seconds

Camera Calibration Method for an Automotive Safety Driving System (자동차 안전운전 보조 시스템에 응용할 수 있는 카메라 캘리브레이션 방법)

  • Park, Jong-Seop;Kim, Gi-Seok;Roh, Soo-Jang;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.621-626
    • /
    • 2015
  • This paper presents a camera calibration method in order to estimate the lane detection and inter-vehicle distance estimation system for an automotive safety driving system. In order to implement the lane detection and vision-based inter-vehicle distance estimation to the embedded navigations or black box systems, it is necessary to consider the computation time and algorithm complexity. The process of camera calibration estimates the horizon, the position of the car's hood and the lane width for extraction of region of interest (ROI) from input image sequences. The precision of the calibration method is very important to the lane detection and inter-vehicle distance estimation. The proposed calibration method consists of three main steps: 1) horizon area determination; 2) estimation of the car's hood area; and 3) estimation of initial lane width. Various experimental results show the effectiveness of the proposed method.

Multiple Camera Calibration for Panoramic 3D Virtual Environment (파노라믹 3D가상 환경 생성을 위한 다수의 카메라 캘리브레이션)

  • 김세환;김기영;우운택
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.137-148
    • /
    • 2004
  • In this paper, we propose a new camera calibration method for rotating multi-view cameras to generate image-based panoramic 3D Virtual Environment. Since calibration accuracy worsens with an increase in distance between camera and calibration pattern, conventional camera calibration algorithms are not proper for panoramic 3D VE generation. To remedy the problem, a geometric relationship among all lenses of a multi-view camera is used for intra-camera calibration. Another geometric relationship among multiple cameras is used for inter-camera calibration. First camera parameters for all lenses of each multi-view camera we obtained by applying Tsai's algorithm. In intra-camera calibration, the extrinsic parameters are compensated by iteratively reducing discrepancy between estimated and actual distances. Estimated distances are calculated using extrinsic parameters for every lens. Inter-camera calibration arranges multiple cameras in a geometric relationship. It exploits Iterative Closet Point (ICP) algorithm using back-projected 3D point clouds. Finally, by repeatedly applying intra/inter-camera calibration to all lenses of rotating multi-view cameras, we can obtain improved extrinsic parameters at every rotated position for a middle-range distance. Consequently, the proposed method can be applied to stitching of 3D point cloud for panoramic 3D VE generation. Moreover, it may be adopted in various 3D AR applications.

Inter-comparison of Bell Prover using Sonic Nozzles (소닉노즐을 이용한 벨 푸루버의 국제비교)

  • Choi, Hae Man;Park, Kyung-Am
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.24-29
    • /
    • 2004
  • The inter-comparison of standards is required to be recognized the calibration results. The sonic nozzle package is developed to do inter-comparison of the bell preyer used to calibrate many gas flow meters for industries. Four national metrology institutes (KRISS, CMS, CENAM, NEL) were participated in this inter-comparison. The deviation of calibration data from the average value was small at the low flow rate and large at the high flow rate, respectively At the high flow rate, the deviation was larger than the expected value from uncertainties asserted by NMIs. This means there are some problems in the uncertainty evaluation and experiment procedures in some of the participated NMIs.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

Calibration of the depth measurement system with a laser pointer, a camera and a plain mirror

  • Kim, Hyong-Suk;Lin, Chun-Shin;Gim, Seong-Chan;Chae, Hee-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1994-1998
    • /
    • 2005
  • Characteristic analysis of the depth measurement system with a laser, a camera and a rotating mirror has been done and the parameter calibration technique for it has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance. The calibration techniques to minimize the effect of such major parameters are proposed.

  • PDF

A 285-fsrms Integrated Jitter Injection-Locked Ring PLL with Charge-Stored Complementary Switch Injection Technique

  • Kim, Sungwoo;Jang, Sungchun;Cho, Sung-Yong;Choo, Min-Seong;Jeong, Gyu-Seob;Bae, Woorham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.860-866
    • /
    • 2016
  • An injection-locked ring phase-locked loop (ILRPLL) using a charge-stored complementary switch (CSCS) injection technique is described in this paper. The ILRPLL exhibits a wider lock range compared to other conventional ILRPLLs, owing to the improvement of the injection effect by the proposed CSCS. A frequency calibration loop and a device mismatch calibration loop force the frequency error to be zero to minimize jitter and reference spur. The prototype chip fabricated in 65-nm CMOS technology achieves a $285-fs_{rms}$ integrated jitter at GHz from the reference clock of 52 MHz while consuming 7.16 mW. The figure-of-merit of the ILRPLL is -242.4 dB.

Establishment of CTD Calibration System and Uncertainty Estimation (CTD 교정 시스템 구축 및 불확도 평가)

  • Lee, Jung-Han;Hwang, Keun-Choon;Kim, Eun-Soo;Lee, Seung-Hun
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • The quality control of ocean observations data is becoming a major issue as real-time observational data and information services have increased recently. Therefore, it is necessary for oceanographic instruments to calibrate. In this paper, we first introduce the CTD calibration system and traceability. Next, CTD calibration procedures and estimation of uncertainty of measurement are described. The expanded uncertainty (k = 2) of the temperature, pressure and conductivity are 0.$0.003^{\circ}C$, $6.0{\times}10^{-5}$ and 0.006 mS/cm respectively. Finally, the excellence of CTD calibration and its measurement capability has been proven by comparing the inter-calibration result of KIOST and Sea-Bird Electronics (SBE). CTD calibration residuals are less than ${\pm}0.0001^{\circ}C$, ${\pm}0.001$ MPa, ${\pm}0.0001$ S/m for SBE 3plus temperature sensor, SBE 19plus pressure sensor and SBE 4C conductivity sensor respectively.

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

3D Depth Measurement System based on Parameter Calibration of the Mu1ti-Sensors (실거리 파라미터 교정식 복합센서 기반 3차원 거리측정 시스템)

  • Kim, Jong-Man;Kim, Won-Sop;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • The analysis of the depth measurement system with multi-sensors (laser, camera, mirror) has been done and the parameter calibration technique has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance.

  • PDF

실시간 전자거리인식을 위한 3차원거리계측 알고리즘

  • Kim, Jong-Man;Sin, Dong-Yong;Lee, Hye-Jeong;Kim, Hyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.5-5
    • /
    • 2010
  • The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance. Also, the calibration technique to minimize their effect for the depth computation is proposed.

  • PDF