• 제목/요약/키워드: Inter-band transition

검색결과 5건 처리시간 0.022초

금 박막에서 표면 플라즈몬 공명과 국소적 밴드 간 천이의 상호작용 (Interaction Between Surface Plasmon Resonance and Inter-band Transition in Gold Thin Film)

  • 강대경;;;최봉준;박종후
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.262-265
    • /
    • 2019
  • The effect of inter-band transition on surface plasmon resonance in gold thin film was investigated. We induced localized inter-band transition in the film by using incident light on its surface from a green laser (532 nm) source, and the surface plasmon resonance for inter-band transition was investigated at different wavelengths. It was determined that the reflectivity of blue light (450 nm) was significantly reduced in the region where the green laser was incident. We demonstrated that this decrease is mainly due to the coupling between the blue light and the surface plasmon resonance of excited electrons in higher energy states, based on experimental results for the incident and polarization angle-dependent reflectivity of the blue light.

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park
    • 한국자기공명학회논문지
    • /
    • 제27권4호
    • /
    • pp.28-34
    • /
    • 2023
  • We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.

Investigation of the interaction between spin density wave and superconductivity in two band high temperature iron based superconductor Ba1-xNaxFe2As2

  • Teklie Lissanu Tegegne
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권2호
    • /
    • pp.9-18
    • /
    • 2024
  • The current study deals with the possible interplay between superconductivity and spin density wave in two band model high temperature iron based superconductor (FeBSC) Ba1-xNaxFe2As2. The electron and hole bands in the presence of the inter-band interaction between the two bands is becoming a vital issue to deal with the high temperature physics of the iron-based superconductors. In this research work, a model Hamiltonian appropriate for the system under consideration has been developed and the temperature dependent Green's function technique has been employed to get the solution for the equations of motion constructed for the two band model high temperature FeBSC Ba1-xNaxFe2As2. By making use of the decoupling procedure, the equations of motion for the dependence of superconducting transition temperature (TC) on spin density wave(SDW) order parameter (ΔSDW) in the electron intra-band (Δsc(e)) , hole intra-band (Δsc(h)) and inter-band (Δsc(eh)) for Ba1-xNaxFe2As2 have been obtained. We have also obtained the expression for the dependence of spin density wave transition temperature(TSDW) on ΔSDW for Ba1-xNaxFe2As2. Using some plausible approximations and appropriate experimental values for the parameters in the obtained equations of motion, phase diagrams of TC versus Δsc(e), Δsc(h) and Δsc(eh) are plotted. Furthermore, a phase diagram of TSDW versus ΔSDW is plotted for the material under consideration. Finally, using the above mentioned phase diagrams, the interplay between superconductivity and spin density wave in the two band model high temperature FeBSC Ba1-xNaxFe2As2 has been demonstrated to be a very distinct possibility. The agreement of the current finding with the experimental observations is quite commendable.

Variation in optical, dielectric and sintering behavior of nanocrystalline NdBa2NbO6

  • Mathai, Kumpamthanath Chacko;Vidya, Sukumariamma;Solomon, Sam;Thomas, Jijimon Kumpukattu
    • Advances in materials Research
    • /
    • 제2권2호
    • /
    • pp.77-91
    • /
    • 2013
  • High quality nanoparticles of neodymium barium niobium ($NdBa_2NbO_6$) perovskites have been synthesized using an auto ignition combustion technique for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscopy. UV-Visible absorption and photoluminescence spectra of the samples are also recorded. The structural analysis shows that the nano powder is phase pure with the average particle size of 35 nm. The band gap determined for $NdBa_2NbO_6$ is 3.9 eV which corresponds to UV-radiation for optical inter band transition with a wavelength of 370nm. The nanopowder could be sintered to 96% of the theoretical density at $1325^{\circ}C$ for 2h. The ultrafine cuboidal nature of nanopowders with fewer degree of agglomeration improved the sinterability for compactness at relatively lower temperature and time. During the sintering process the wide band gap semiconducting behavior diminishes and the material turns to a high permittivity dielectric. The microstructure of the sintered surface was examined using scanning electron microscopy. The striking value of dielectric constant ${\varepsilon}_r=43$, loss factor tan ${\delta}=1.97{\times}10^{-4}$ and the observed band gap value make it suitable for many dielectric devices.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF