• 제목/요약/키워드: Inter-Small cell Handover

검색결과 3건 처리시간 0.017초

Analytical Study on Inter-Cell Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

  • Gu, Hangyu;Li, Shuangchun;Havyarimana, Vincent;Wang, Dong;Xiao, Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2029-2043
    • /
    • 2018
  • In this paper, we propose a novel inter-cell handover approach from a new perspective in dense Heterogeneous and Small Cell Networks (HetSNets). We first devise a cell selection mechanism to choose a proper candidate small cell for the UEs that tend to implement inter-small cell handover (ICH). By exploiting the property of a typical non-concentric circle, i.e., circle of Apollonius, we then propose a novel analytical method for modeling inter-cell handover regions and present mathematical derivation to prove that the inter-small cell handover issues fit the property of the circle of Apollonius. We design an inter-cell handover algorithm (ICHA) by means of our proposed handover model to dynamically configure hysteresis margin and properly implement handover decision in terms of UE's mobility. Simulation results demonstrate that the proposed ICHA yields lower call drop rate and radio link failure rate than the conventional methods and hence achieve high Handover Performance Indicator (HPI).

A Receiver-Aided Seamless And Smooth Inter-RAT Handover At Layer-2

  • Liu, Bin;Song, Rongfang;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4015-4033
    • /
    • 2015
  • The future mobile networks consist of hyper-dense heterogeneous and small cell networks of same or different radio access technologies (RAT). Integrating mobile networks of different RATs to provide seamless and smooth mobility service will be the target of future mobile converged network. Generally, handover from high-speed networks to low-speed networks faces many challenges from application perspective, such as abrupt bandwidth variation, packet loss, round trip time variation, connection disruption, and transmission blackout. Existing inter-RAT handover solutions cannot solve all the problems at the same time. Based on the high-layer convergence sublayer design, a new receiver-aided soft inter-RAT handover is proposed. This soft handover scheme takes advantage of multihoming ability of multi-mode mobile station (MS) to smooth handover procedure. In addition, handover procedure is seamless and applicable to frequent handover scenarios. The simulation results conducted in UMTS-WiMAX converged network scenario show that: in case of TCP traffics for handover from WiMAX to UMTS, not only handover latency and packet loss are eliminated completely, but also abrupt bandwidth/wireless RTT variation is smoothed. These delightful features make this soft handover scheme be a reasonable candidate of mobility management for future mobile converged networks.

HeNB-Aided Virtual-Handover for Range Expansion in LTE Femtocell Networks

  • Tang, Hao;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • 제15권3호
    • /
    • pp.312-320
    • /
    • 2013
  • Home evolved Node-B (HeNB), also called a femtocell or a femto base station, is introduced to provide high data rate to indoor users. However, two main problems arise in femtocell networks: (1) Small coverage area of HeNB, which results in limited cell-splitting gain and ping-pong handover (HO) problems and (2) high inter-femtocell interference because HeNBs may be densely deployed in a small region. In this study, an efficient cooperation mechanism called an HeNB-aided virtual-HO (HaVHO) scheme is proposed to expand the coverage area of femtocells and to reduce inter-femtocell interference. The cooperation among neighbor HeNBs is exploited in HaVHO by enabling an HeNB to relay the data of its neighbor HeNB without an HO. The HaVHO procedure is compatible with the existing long term evolution specification, and the information exchange overhead in HaVHO is relatively low. To estimate the signal to interference plus noise ratio improvement, the area average channel state metric is proposed, and the amount of user throughput enhancement by HaVHO is derived. System-level simulation shows that HaVHO has a better performance than the other four schemes, such as lesser radio link failure, lesser ping-pong handover, lesser short-stay handover, and higher user throughput.