• Title/Summary/Keyword: Inter-Poly Dielectric

Search Result 7, Processing Time 0.023 seconds

ILD(Inter-layer Dielectric) engineering for reduction of self-heating effort in poly-Si TFT (다결정 실리콘 박막 트렌지스터의 self-heating 효과를 감소시키기 위한 ILD 구조 개선)

  • Park, Soo-Jeong;Moon, Kook-Chul;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.134-136
    • /
    • 2002
  • 유리기판 위에서 제작된 다결정 실리콘 TFT(Thin Film Transistor) 에서는 열전도율이 낮은 실리콘 산화막 같은 물질이 사용되기 때문에 열에 대해서 낮은 임계점을 갖는다. 이로 인하여. 게이트와 드레인에 높은 전압이 걸리는 조건에서 동작시킬 경우에는 다결정 실리콘 TFT에서의 열화 현상이 두드러지게 나타나게 된다. 그러나, 열전도율이 실리콘 산화막(SiO2) 보다 열배 이상 높은 실리콘 질화막(SiNx)을 ILD(inter-layer dielectric) 재료로 사용했을 때 같은 스트레스 조건에서 다결정 실리콘의 신뢰성이 개선되는 것을 확인할 수 있었다.

  • PDF

Study of the New Structure of Inter-Poly Dielectric Film of Flash EEPROM (Flash EEPROM의 Inter-Poly Dielectric 막의 새로운 구조에 관한 연구)

  • Shin, Bong-Jo;Park, Keun-Hyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.9-16
    • /
    • 1999
  • When the conventional IPD (inter-poly-dielctrics) layer with ONO(oxide-nitride-oxide) structure was used in the Flash EEPROM cell, its data retention characteristics were significanfly degraded because the top oxide of the ONO layer was etched off due to the cleaning process used in the gate oxidation process for the peripheral MOSFETs. When the IPD layer with the ONON(oxide-nitride-oxide-nitride) was used there, however, its data retention characteristics were much improved because the top nitride of the ONON layer protected the top oxide from being etched in the cleaning process. For the modelling of the data retention characteristics of the Flash EEPROM cell with the ONON IPD layer, the decrease of the threshold voltage cue to the charge loss during the bake was here given by the empirical relation ${\Delta}V_t\; = \;{\beta}t^me^{-ea/kT}$ and the values of the ${\beta}$=184.7, m=0.224, Ea=0.31 eV were obtained with the experimental measurements. The activation energy of 0.31eV implies that the decrease of the threshold voltage by the back was dur to the movement of the trapped electrons inside the inter-oxide nitride layer. On the other hand, the results of the computer simulation using the model were found to be well consistent with the results of the electrical measurements when the thermal budget of the bake was not high. However, the latter was larger then the former in the case of the high thermal budger, This seems to be due to the leakage current generated by the extraction of the electrons with the bake which were injected into the inter-oxide niride later and were trapped there during the programming, and played the role to prevent the leakage current. To prevent the generation of the leakage current, it is required that the inter-oxide nitride layer and the top oxide layer be made as thin and as thick as possible, respectively.

  • PDF

A Study on Threshold Voltage Degradation by Loss Effect of Trapped Charge in IPD Layer for Program Saturation in a MLC NAND Flash Memory (멀티레벨 낸드 플래쉬 메모리 프로그램 포화 영역에서의 IPD 층에 트랩된 전하의 손실 효과에 의한 문턱 전압 저하 특성에 대한 연구)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • This research scrutinizes the data retention characteristics of the MLC NAND Flash Memory instigated by the loss effect of trapped charge when the memory is in the state of program saturation. It is attributed to the threshold voltage saturation phenomenon which engenders an interruption to the linear increase of the voltage in the memory cell. This phenomenon is occasioned by the outflow of the trapped charge from the floating gate to the control gate, which has been programmed by the ISPP (Incremental Step Pulse Programming), via Inter-Poly Dielectric (IPD). This study stipulates the significant degradation of thermal retention characteristics of threshold voltage in the saturation region in contrast to the ones in the linear region. Thus the current study evaluates the data retention characteristics of voltage after the program with a repeated reading test in various measurement conditions. The loss effect of trapped charge is found in the IPD layer located between the floating gate and the control gate especially in the nitride layer of the IPD. After the thermal stress, the trapped charge is de-trapped and displays the impediment of the characteristic of reliability. To increase the threshold saturation voltage in the NAND Flash Memory, the storage ability of the charge in the floating gate must be enhanced with a well-thought-out designing of the module in the IPD layer.

Moisture Induced Hump Characteristics of Shallow Trench-Isolated nMOSFET (Shallow Trench Isolation 공정에서 수분에 의한 nMOSFET의 Hump 특성)

  • Lee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2258-2263
    • /
    • 2006
  • In this parer, hump characteristics of short-channel nMOSFETs induced by moistures of the ILD(inter-layer dielectric) layer in the shallow trench isolation (STI) process are investigated and the method for hump suppression is proposed Using nMOSFETs with various types of the gate and a measurement of TDS-APIMS (Thermal Desorption System-Atmospheric Pressure ionization Mass Spectrometry), hump characteristics were systematically analyzed and the systemic analysis based hump model was presented; the ILD layer over poly-Si gate of nMOSFET generates moistures, but they can't diffuse out of the SiN layer due to the upper SiN layer. Consequently, they diffuses into the edge between the gate and STI and induces short-channel hump. In order to eliminate moisture in the ILD layer by out-gassing method, the annealing process prior to the deposition of the SiN layer was carried out. As the result, short-channel humps of the nMOSFETs were successfully suppressed.

2.2 inch qqVGA AMOLED drived by ultra low temperature poly silicon (ULTPS) TFT direct fabricated below $200^{\circ}C$

  • Kwon, Jang-Yeon;Jung, Ji-Sim;Park, Kyung-Bae;Kim, Jong-Man;Lim, Hyuck;Lee, Sang-Yoon;Kim, Jong-Min;Noguchi, Takashi;Hur, Ji-Ho;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.309-313
    • /
    • 2006
  • We demonstrated 2.2inch qqVGA AMOLED display drived by ultra low temperature poly-Si (ULTPS) TFT not transferred but direct fabricated below $200^{\circ}C$. Si channel was crystallized by decreasing impurity concentration even at room temperature. Gate insulator with a breakdown field exceeding 8 MV/cm was realized by Inductively coupled plasma - CVD. In order to reduce stress of plastic, organic film was coated as inter-dielectric and passivation layers. Finally, ULTPS TFT of which mobility is over $20cm^2/Vsec$ was fabricated on transparent plastic substrate and drived OLED display successfully.

  • PDF

Characteristic of Lower Hydrogenated Oxide Films Deposited by the Higher Energy Assisting Deposition Systems Using the with Precursor Siloxane Species

  • Kim, J.;Yang, J.;Park, G.;Hur, G.;Lee, J.;Ban, W.;Jung, D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.339.1-339.1
    • /
    • 2014
  • In this paper we studied the application of inter-poly dielectric as silicon dioxide-like film was deposited by the higher energy assisting deposition (HEAD) process the modified CCP process, which enables low temperature (LT) process and improving film density. In these experiments the relative hydrogen concentration of $SiO_2$-like films deposited on silicon substrate were analyzed by the secondary ion mass spectroscopy (SIMS) and it was shown that our lower hydrogenated oxide (LHO) film prepared by HEAD process with the precursor contained the siloxane species had lower hydrogen concentration, $8{\times}10{\cdot}^{22}cm{\cdot}^3$ than that of the commercial undoped silicon glass (USG) film ($1{\times}10{\cdot}^{21}cm{\cdot}^3$) prepared by the high density plasma-chemical vapor deposition (HDP-CVD). We consider that the LHO film deposited by HEAD process used as high performance material into Flash memory devices.

  • PDF

Radiation Resistance Evaluation of Thin Film Transistors (박막트랜지스터의 방사선 내구성 평가)

  • Seung Ik Jun;Bong Goo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.625-631
    • /
    • 2023
  • The important requirement of industrial dynamic X-ray detector operating under high tube voltage up to 450 kVp for 24 hours and 7 days is to obtain significantly high radiation resistance. This study presents the radiation resistance characteristics of various thin film transistors (TFTs) with a-Si, poly-Si and IGZO semiconducting layers. IGZO TFT offering dozens of times higher field effect mobility than a-Si TFT was processed with highly hydrogenated plasma in between IGZO semiconducting layer and inter-layered dielectric. The hydrogenated IGZO TFT showed most sustainable radiation resistance up to 10,000Gy accumulated, thus, concluded that it is a sole switching device in X-ray imaging sensor offering dynamic X-ray imaging at high frame rate under extremely severe radiation environment such as automated X-ray inspection.