• Title/Summary/Keyword: Inter-Channel Interference

Search Result 315, Processing Time 0.017 seconds

Influences and Compensation of Phase Noise and IQ Imbalance in Multiband DFT-S OFDM System for the Spectrum Aggregation (스펙트럼 집성을 위한 멀티 밴드 DFT-S OFDM 시스템에서 직교 불균형과 위상 잡음의 영향 분석 및 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon;Choi, Jin-Kyu;Kim, Jin-Up
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1275-1284
    • /
    • 2010
  • 100 MHz bandwidth and 1 Gbit/s data speed are needed in LTE-advanced for the next generation mobile communication system. Therefore, spectrum aggregation method has been studied recently to extend usable frequency bands. Also bandwidth utilization is increased since vacant frequencies are used to communicate. However, transceiver structure requires the digital RF and SDR. Therefore, frequency synthesizer and PA must operate over wide-bandwidth and RF impairments also increases in transceiver. Uplink of LTE advanced uses DFT-S OFDM using plural power amplifier. The effect of ICI increases in frequency domain of receiver due to phase noise and IQ imbalance. In this paper, we analyze influences of ICI in frequency domain of receiver considering phase noise and IQ imbalance in multiband system. Also, we separate phase noise and IQ imbalance effect from channel response in frequency domain of uplink system. And we propose a method to estimate the channel exactly and to compensate IQ imbalance and phase noise. Simulation result shows that the proposed method achieves the 2 dB performance gain of BER=$10^{-4}$.

Experimental Performance Analysis of BCJR-Based Turbo Equalizer in Underwater Acoustic Communication (수중음향통신에서 BCJR 기반의 터보 등화기 실험 성능 분석)

  • Ahn, Tae-Seok;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.293-297
    • /
    • 2015
  • Underwater acoustic communications has been limited use for military purposes in the past. However, the fields of underwater applications expend to detection, submarine and communication in recent. The excessive multipath encountered in underwater acoustic communication channel is creating inter symbol interference, which is limiting factor to achieve a high data rate and bit error rate performance. To improve the performance of a received signal in underwater communication, many researchers have been studied for channel coding scheme with excellent performance at low SNR. In this paper, we applied BCJR decoder based ( 2,1,7 ) convolution codes and to compensate for the distorted data induced by the multipath, we applying the turbo equalization method. Through the underwater experiment on the Gyeungcheun lake located in Mungyeng city, we confirmed that turbo equalization structure of BCJR has better performance than hard decision and soft decision of Viterbi decoding. We also confirmed that the error rate of decoder input is less than error rate of $10^{-1}$, all the data is decoded. We achieved sucess rate of 83% through the experiment.

New Beamforming Schemes with Optimum Receive Combining for Multiuser MIMO Downlink Channels (다중사용자 다중입출력 하향링크 시스템을 위한 최적 수신 결합을 이용한 새로운 빔 형성 기법)

  • Lee, Sang-Rim;Park, Seok-Hwan;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.15-26
    • /
    • 2011
  • In this paper, we present a new beamforming scheme for a downlink of multiuser multiple-input multipleoutput (MIMO) communication systems. Recently, a block-diagonalization (BD) algorithm has been proposed for the multiuser MIMO downlink where both a base station and each user have multiple antennas. However, the BD algorithm is not efficient when the number of supported streams per user is smaller than that of receive antennas. Since the BD method utilizes the space based on the channel matrix without considering the receive combining, the degree of freedom for beamforming cannot be fully exploited at the transmitter. In this paper, we optimize the receive beamforming vector under a zero forcing (ZF) constraint, where all inter-user interference is driven to zero. We propose an efficient algorithm to find the optimum receive vector by an iterative procedure. The proposed algorithm requires two phase values feedforward information for the receive combining vector. Also, we present another algorithm which needs only one phase value by using a decomposition of the complex general unitary matrix. Simulation results show that the proposed beamforming scheme outperforms the conventional BD algorithm in terms of error probability and obtains the diversity enhancement by utilizing the degree of freedom at the base station.

A 2.0-GS/s 5-b Current Mode ADC-Based Receiver with Embedded Channel Equalizer (채널 등화기를 내장한 2.0GS/s 5비트 전류 모드 ADC 기반 수신기)

  • Moon, Jong-Ho;Jung, Woo-Chul;Kim, Jin-Tae;Kwon, Kee-Won;Jun, Young-Hyun;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.184-193
    • /
    • 2012
  • In this paper, a 5-bit 2-GS/s 2-way time interleaved pipeline ADC for high-speed serial link receiver is demonstrated. Implemented as a current-mode amplifier, the stage ADC simultaneously processes the tracking and residue amplification to achieve higher sampling rate. In addition, each stage incorporates a built-in 1-tap FIR equalizer, reducing inter-symbol-interference (ISI)without an extra digital post-processing. The ADC is designed in a 110nm CMOS technology. It comsumes 91mW from a 1.2-V supply. The area excluding the memory block is $0.58{\times}0.42mm^2$. Simulation results show that when equalizer is enabled, the ADC achieves SNDR of 25.2dB and ENOB of 3.9bits at 2.0GS/s sample rate for a Nyquist input signal. When the equalizer is disengaged, SNDR is 26.0dB for 20MHz-1.0GHz input signal, and the ENOB of 4.0bits.

Multi-user Diversity Scheduling Methods Using Superposition Coding Multiplexing (중첩 코딩 다중화를 이용한 다중 사용자 다이버시티 스케줄링 방법)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.332-340
    • /
    • 2010
  • In this paper, we deal with multi-user diversity scheduling methods that transmit simultaneously signals from multiple users using superposition coding multiplexing. These methods can make various scheduling methods be obtained, according to strategies for user selection priority from the first user to the first-following users, strategies for per-user power allocation, and resulting combining strategies. For the first user selection, we consider three strategies such as 1) higher priority for a user with a better channel state, 2) following the proportional fair scheduling (PFS) priority, 3) higher priority for a user with a lower average serving rate. For selection of the first-following users, we consider the identical strategies for the first user selection. However, in the second strategy, we can decide user priorities according to the original PFS ordering, or only once an additional user for power allocation according to the PFS criterion by considering a residual power and inter-user interference. In the strategies for power allocation, we consider two strategies as follows. In the first strategy, it allocates a power to provide a permissible per-user maximum rate. In the second strategy, it allocates a power to provide a required per-user minimum rate, and then it reallocates the residual power to respective users with a rate greater than the required minimum and less than the permissible maximum. We consider three directions for scheduling such as maximizing the sum rate, maximizing the fairness, and maximizing the sum rate while maintaining the PFS fairness. We select the max CIR, max-min fair, and PF scheduling methods as their corresponding reference methods [1 and references therein], and then we choose candidate scheduling methods which performances are similar to or better than those of the corresponding reference methods in terms of the sum rate or the fairness while being better than their corresponding performances in terms of the alternative metric (fairness or sum rate). Through computer simulations, we evaluate the sum rate and Jain’s fairness index (JFI) performances of various scheduling methods according to the number of users.