• Title/Summary/Keyword: Inter-Channel Interference

Search Result 315, Processing Time 0.025 seconds

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Performance of 8SQAM System in a Nonlinearly Amplified SCPC-FDMA Channel Interference Environment (비선형 증폭 SCPC-FDMA 채널 간섭 환경에서 8SQAM 시스템의 성능)

  • 성봉훈;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.678-687
    • /
    • 2003
  • 8SQAM(8-state Superposed Quadrature Amplitude Modulation) being a new modem technique for use in power and bandwidth limited digital communication system generates output signals which have a mか and continuous phase transition and a reduced envelope fluctuation by keeping correlation between amplitudes and phases of two subsequent symbols. Also, 8SQAM signal is free of inter-symbol interference(ISI), and has a compact power spectrum. Accordingly 8SQAM, as compared with a conventional 8PSK, is influenced a little by inter-modulation(IM), inter-symbol interference(ISI) and adjacent channel interference(ACI) in a nonlinearly amplified multi-channel(SCPC-FDMA) environment. In this paper, the performance of 8SQAM system in a nonlinearly amplified multi-channel interference environment is analyzed via computer simulation The simulation result shows that 8SQAM outperforms 8PSK with roll-off value of $\alpha$ = 0.3 by 2.7dB in CNR to maintain BER=1$\times$10$^{-4}$ when input back-off(IBO) of HPA is 1dB and channel space is 41.7% of the data bit rate(i.e., spectral efficiency = 2.40b/s/Hz).

Performance Evaluation of One Channel B-WLL IF Receiver System (단일 채널 B-WLL IF 시스템 수신부 성능 분석)

  • 최성연;이창석;전동근
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • In this thesis, We analyze performance evaluation of one channel B-WLL IF receiver system. Among the item of receiver performance, inter-modulation interference and yield analysis is especially focused. Since inter-modulation interference cause bad influence on system performance due to unwanted third order harmonic located in desired frequency band, third order harmonic causing inter-modulation interference should be efficiently removed. Yield analysis is observing influence on system performance when system element parameter is statistically varied, and in this thesis, system output is observed for LNA parameters. Additionally, Scheme for LNA gain adjustment to reduce inter-modulation interference is proposed by observing variation of third order harmonic output for LNA gain variation.

  • PDF

A Robust OFDMA Channel Estimation Against Imperfect Synchronization (불완전 동기 환경에 강인한 OFDMA 채널 추정기법)

  • Chae Soo-Jin;Kim Eun-Ju;Kim Nak-Myeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.649-655
    • /
    • 2005
  • We propose a robust channel estimation method against imperfect synchronization in orthogonal frequency division multiple access (OFDMA) downlink systems. We address time and frequency synchronization, and the channel estimation at the same time, and try to minimize the error propagation from the time and frequency synchronization steps into the chailnel estimation. The simulation results show that the proposed channel estimation method outperforms the conventional algorithms by about 3dB, and circumvents the problem of mismatch among the synchronization tasks.

A Multi-Channel Adaptive PRML for Reduction of Inter-Track Interference in Digital High-Density Recording Channels (디지탈 고밀도 기록 채널의 트랙간 간섭 감소를 위한 다채널 적응 PRML)

  • 강현우;전원기;조용수;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1565-1571
    • /
    • 1995
  • Misalignment of recording head position results in inter-track interference (ITI), which is a primary factor limiting radial(track) density in current digital magnetic channels. This paper proposes a multi- channel adaptive PRML for digital high-density recording channels, and compares it with the conventional single-channel PRML in the presence of ITI for the per- formance evaluation. Simulation results show that the proposed method removes ITI effectively when heal-misalignment occurs, then improving its performance significantly as compared with the single- channel PRML. As a result, it is confirmed that multi-channel adaptive PRML is well suited for high-density recording in digital magnetic channels.

  • PDF

Decision-Feedback Detector for Quasi-Orthogonal Space-Time Block Code over Time-Selective Channel (시간 선택 채널에서의 QO-STBC를 위한 피드백 결정 검출기)

  • Wang, Youxiang;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.933-940
    • /
    • 2009
  • This paper proposes a robust detection scheme for quasi-orthogonal space-time block code over time-selective fading channels. The proposed detector performs interference cancellation and decision feedback equalization to remove the inter-antenna interference and inter-symbol interference when the channel varies from symbol to symbol. Cholesky factorization is used on the channel Gram matrix after performing interference cancellation to obtain feed forward equalizer and feedback equalizer. It is shown by simulations that the proposed detection scheme outperforms the conventional detection schemes and the exiting detection schemes to time-selectivity.

Resource Allocation in Full-Duplex OFDMA Networks: Approaches for Full and Limited CSIs

  • Nam, Changwon;Joo, Changhee;Yoon, Sung-Guk;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.913-925
    • /
    • 2016
  • In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency band. Due to the complexity of self-interference cancellation techniques, only base stations (BSs) are expected to be full-duplex capable while user terminals remain as legacy half-duplex nodes in the near future. In this case, two different nodes share a single subchannel, one for uplink and the other for downlink, which causes inter-node interference between them. In this paper, we investigate the joint problem of subchannel assignment and power allocation in a single-cell full-duplex orthogonal frequency division multiple access (OFDMA) network considering the inter-node interference. Specifically, we consider two different scenarios: i) The BS knows full channel state information (CSI), and ii) the BS obtains limited CSI through channel feedbacks from nodes. In the full CSI scenario, we design sequential resource allocation algorithms which assign subchannels first to uplink nodes and then to downlink nodes or vice versa. In the limited CSI scenario, we identify the overhead for channel measurement and feedback in full-duplex networks. Then we propose a novel resource allocation scheme where downlink nodes estimate inter-node interference with low complexity. Through simulation, we evaluate our approaches for full and limited CSIs under various scenarios and identify full-duplex gains in various practical scenarios.

A Channel Estimation and Detection Method for Multi-Cell Signals Using the PN Sequence Pilot in Time-Varying Channel Environments (시변 채널 환경에서 PN 수열 파일럿을 활용한 다중 셀 신호의 채널 추정 및 검출 방법)

  • Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.351-360
    • /
    • 2008
  • In cellular mobile radio systems with frequency reuse, the interference signals degrade the channel estimation and signal detection performance due to the low signal-to-interference ratio near coverage boundaries. When the preamble pilot sequences from different cells are orthogonal or located in disjointed positions, they can be used for multi-cell channel estimation and interference cancellation. In time-varying channels caused by Doppler spread, data pilot symbols are needed for channel estimations. However, data pilot symbols are usually located in identical positions for the overhead reduction, which degrades the channel estimation performance. In this paper, we demonstrate a significant amount of performance improvement is achieved by multiplying different pseudonoise(PN) sequences to the data pilot symbols from adjacent interference cells. In particular, for detection scheme using maximal ratio combining(MRC) and inter-cell spatial demultiplexing(ISD), quantitative performance gain of spectral efficiency for different values of Doppler frequency and interference power is presented.

An Electronic Domain Chromatic Dispersion Monitoring Scheme Insensitive to OSNR Using Kurtosis

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Chung, Won-Zoo;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • In this paper we present an electronic domain solution for chromatic dispersion (CD) monitoring algorithm based on the estimated time domain channel in electronic domain using channel estimation methods. The proposed scheme utilizes kurtosis as a CD measurement, directly computed from the estimated inter-symbol-interference (ISI) channel due to the CD distortion. Hence, the proposed scheme exhibits robust performance under OSNR variation, in contrast to the existing electronic domain approach based on minimum mean squared error (MMSE) fractionally-spaced equalizer taps [1]. The simulation results verify the CD monitoring ability of the proposed scheme.

Multi-Channel Audio CODEC with Channel Interference Suppression

  • Choi, Moo-Yeol;Lee, Sung-No;Lee, Myung-Jin;Lee, Yong-Hee;Park, Ho-Jin;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.608-614
    • /
    • 2015
  • A multi-channel audio CODEC with inter-channel interference suppression is proposed, in which channel switching noise-referred sampling error is significantly reduced. It also supports a coarse/fine mode operation for fast frequency tracking with good harmonic performance. The proposed multi-channel audio CODEC was designed in a 65 nm CMOS process. Measured results indicated that SNR and SNDR of ADC were 93 dB and 84dB, respectively, with SNDR improved by 43 dB. Those of DAC were 96 dB and 87 dB, respectively, with SNDR improved by 45 dB when all the channels are running independently.