• Title/Summary/Keyword: Inter-Channel Interference

Search Result 315, Processing Time 0.024 seconds

New Channel Equalizers for Mixed Phase Channel (혼합위상 특성을 고려한 새로운 채널 등화기)

  • 안경승;조주필;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1445-1452
    • /
    • 2000
  • In general, the communication channel can be modeled as inter-symbol interference(ISI) and additive white gaussian noise channel. Viterbi algorithm is optimum detector for transmitted data at transmitter, but it needs large computational complexity. For the sake of this problem, adaptive equalizers are employed for channel equalization which is not attractive for mixed phase channel. In this paper, we propose the effective new channel equalizer for mixed phase channel and show the better performance than previous equalizers.

  • PDF

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

Efficient equalizer design for multi-carrier transmission system in local area access (가입자 지역 다중반송파 전송시스템의 등화기 구현)

  • 최재호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.32-38
    • /
    • 2001
  • Multi-carrier data transmission system performance is mostly limited by Inter- symbol-interference that is caused by a dispersive characteristic of the transmission channel. In order to enhance the system performance to meet the service requirements of local access, the channel impulse response shortening method incorporated with a channel frequency response compensation method is proposed. For a fast and efficient implementation of the equalizer proposed, Kalman and LMS algorithms are successively used. To verify the channel equalization performance, a set of computer simulation is performed on a filter bank based multitone system operating in a typical high-speed local area data transmission environment. The results showed us a comparable signal-to-interference improvement over the conventional multitone equalization scheme.

  • PDF

Resource Allocation for D2D Communication in Cellular Networks Based on Stochastic Geometry and Graph-coloring Theory

  • Xu, Fangmin;Zou, Pengkai;Wang, Haiquan;Cao, Haiyan;Fang, Xin;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4946-4960
    • /
    • 2020
  • In a device-to-device (D2D) underlaid cellular network, there exist two types of co-channel interference. One type is inter-layer interference caused by spectrum reuse between D2D transmitters and cellular users (CUEs). Another type is intra-layer interference caused by spectrum sharing among D2D pairs. To mitigate the inter-layer interference, we first derive the interference limited area (ILA) to protect the coverage probability of cellular users by modeling D2D users' location as a Poisson point process, where a D2D transmitter is allowed to reuse the spectrum of the CUE only if the D2D transmitter is outside the ILA of the CUE. To coordinate the intra-layer interference, the spectrum sharing criterion of D2D pairs is derived based on the (signal-to-interference ratio) SIR requirement of D2D communication. Based on this criterion, D2D pairs are allowed to share the spectrum when one D2D pair is far from another sufficiently. Furthermore, to maximize the energy efficiency of the system, a resource allocation scheme is proposed according to weighted graph coloring theory and the proposed ILA restriction. Simulation results show that our proposed scheme provides significant performance gains over the conventional scheme and the random allocation scheme.

Novel Beamforming and Scheduling Method for Interference Mitigation at Cell Edge (셀 경계 지역 간섭 완화를 위한 효율적 빔포밍 및 스케쥴링 방법)

  • Kim, Kyung Hoon;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.129-133
    • /
    • 2012
  • Coordinated multi-point transmission (CoMP) is a candidate technique for next generation cellular communications systems. One of the primary elements discussed in LTE-Advanced technology is CoMP, which can improve cell edge user data rate as well as spectral efficiency due to multiple input multiple output - orthogonal frequency division multiplex (MIMO-OFDM). We consider a system with multiple cells in which base stations coordinate with each other by sharing user channel state information (CSI), which mitigates inter cell interference (ICI), especially for users located at the cell edge. We introduce a new user scheduling method of ICI cancellation and the loss reduction of effective channel gain during the beamforming process, the proposed method improves the system sum rate, when compared to the conventional method by an average of 0.55bps/Hz in different number of total users per cell. It also outperforms the conventional method by approximately 0.38bps/Hz using different SNRs.

An Analysis on Signal to Interchannel Interference Ratio of MC-CDMA System in Time Selective Fading Environments (시간선택적 페이딩 환경에서 MC-CDMA 시스템의 신호대 채널간 간섭의 비에 대한 분석)

  • 김명진;김성필;오종갑
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.33-36
    • /
    • 2001
  • In MC-CDMA systems effects of delay spread of the channel are reduced with increased symbol duration by simultaneously transmitting data symbols on the parallel subcarriers. However, the increased symbol duration causes the system to be more vulnerable to time selective fading. In this paper, we investigate the effects of time selective fading characteristics of the mobile channel from the viewpoint of desired signal power to inter-carrier interference power ratio at the combiner output of the MC-CDMA receiver.

  • PDF

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

Limited Feedback Performance Aanlysis of Regularized Joint Spatial Division and Multiplexing Scheme (정규화된 결합 공간 분할 다중화 기법의 제한된 피드백 환경에서 성능 분석)

  • Song, Changick
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.420-424
    • /
    • 2021
  • The massive MIMO system, which is a core technology of 5G communication systems, has a problem that it is difficult to implement in a frequency division duplex system based on limited channel feedback because a large amount of channel information is required at the transmitting end. In order to solve this problem, the Joint Spatial Division and Multiplexing (JSDM) technique that dramatically reduces the channel information requirement by removing interference between the user groups using channel correlation information that does not change for a long time has been proposed. Recently, a regularized JSDM technique has been proposed to further improve performance by allowing residual interference between the user groups. However, such JSDM-related studies were mainly designed to focus on inter-group interference cancellation, and thus performance analysis was not performed in a more realistic environment assuming limited feedback in the intra-group interference cancellation phase. In this paper, we analyze the performance of the JSDM and regularized JSDM techniques according to the number of groups and users in a limited feedback environment, and through the simulation results, demonstrate that the regularized JSDM technique shows a more remarkable advantage compared to the existing JSDM in a limited feedback environments.

Game Theory based Dynamic Spectrum Allocation for Secondary Users in the Cell Edge of Cognitive Radio Networks

  • Jang, Sungjin;Kim, Jongbae;Byun, Jungwon;Shin, Yongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2231-2245
    • /
    • 2014
  • Cognitive Radio (CR) has very promising potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in CR scenarios. This is particularly problematic for deploying CR in cellular networks, when users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse are critical requirements for both PUs and SUs. Further cellular networks require higher cell edge performance, then SUs will meet more challenges than PUs. To solve the performance decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as inter-cell interference mitigated according to SUs' sensing, measurement and interaction in this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge user experience and network performance through distributed pricing calculation and exchange based on game theory. Analytical proof is presented and simulation results show that the proposed scheme achieves high efficiency of spectrum usage and improvement of cell edge SUs' performance.