• Title/Summary/Keyword: Inter symbol interference equalization

Search Result 58, Processing Time 0.021 seconds

An Iterative Equalization with Double Feedback Filters (이중 피드백 필터 기반의 반복 등화기 구조 및 성능)

  • Cha, Yu-Jin;Choi, Jeong-Min;Seo, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.105-107
    • /
    • 2013
  • 단일 반송파 시스템은 다중경로를 가지는 무선채널을 통과할 때 심볼 간 간섭(Inter-symbol Interference, ISI)에 의한 영향을 크게 받으며 이를 보상하기 위한 등화방식은 그동안 많이 연구되어왔다. 본 논문에서는 단일 반송파 시스템에서 심볼 간 간섭의 영향을 보상하기 위해서 잡음 예측기와 결합된 이중 피드백 구조의 등화 방식을 제안한다. 또한, 제안된 등화 방식이 기존 반복 결정 궤환 등화기에 비해 향상된 성능을 가지는 것을 이론적 분석과 모의실험을 통해서 분석한다.

  • PDF

An Optimal Space Time Coding Algorithm with Zero Forcing Method in Underwater Channel (수중통신에서 Zero Forcing기법을 이용한 최적의 시공간 부호화 알고리즘)

  • Kwon, Hae-Chan;Park, Tae-Doo;Chun, Seung-Yong;Lee, Sang-Kook;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.349-356
    • /
    • 2014
  • In the underwater communication, the performance of system is reduced because of the inter-symbol interference occur by the multi-path. In the recent years, to deal with poor channel environment and improve the throughput, the efficient concatenated structure of equalization, channel codes and Space Time Codes has been studied as MIMO system in the underwater communication. Space Time Codes include Space Time Block Codes and Space Time Trellis Codes in underwater communication. Space Time Trellis Codes are optimum for equalization and channel codes among the Space Time Codes to apply in the MIMO environment. Therefore, in this paper, turbo pi codes are used for the outer code to efficiently transmit in the multi-path channel environment. The inner codes consist of Space Time Trellis Codes with transmission diversity and coding gain in the MIMO system. And Zero Forcing method is used to remove inter-symbol interference. Finally, the performance of this model is simulated in the underwater channel.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.

Algorithm and experimental verification of underwater acoustic communication based on passive time reversal mirror in multiuser environment (다중송신채널 환경에서 수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Oh, Sehyun;Kim, J.S.;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Underwater communication is difficult to increase the communication capacity because the carrier frequency is lower than that of radio communications on land. This is limited to the bandwidth of the signal under the influence of the characteristics of an ocean medium. As the high transmission speed and large transmission capacity have become necessary in the limited frequency range, the studies on MIMO (Multiple Input Multiple Output) communication have been actively carried out. The performance of the MIMO communication is lower than that of the SIMO (Single Input Multiple Output) communication because cross-talk occurs due to multiusers along with inter symbol interference resulting from the channel characteristics such as delay spread and doppler spread. Although the adaptive equalizer considering multi-channels is used to mitigate the influence of the cross-talk, the algorithm is normally complicated. In this paper, time reversal mirror technique with the characteristic of a self-equalization will be applied to simplify the compensation algorithm and relieve the cross-talk in order to improve the communication performance when the signal transmitted from two channels is received over interference on one channel in the same time. In addition, the performance of the MIMO communication based on the time reversal mirror is verified using data from the SAVEX15(Shallow-water Acoustic Variability Experiment 2015) conducted at the northern area of East China Sea in May 2015.

Design of Equalizer using Fussy Stochastic Gradient Algorithm (퍼지 확률 기울기 알고리즘을 이용한 등화기 설계)

  • Park, Hyoung-Keun;Ra, Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • For high-speed data communication in band-limited channels, main of the bit error are fading and ISI(Inter-Symbol Interference). The common way of dealing with ISI is using equalization in the receiver. In this thesis, channel adaptive equalizer which uses Fuzzy Stochastic Gradient(FSG) and Constant Modulus Algorithm(CMA) is nonlinear equalizer, or Blind equalizer, that works directly on the signals with no training sequences required. This equalizer employs Takagi-Sugeno's fuzzy model that uses the FSG algorithm, to automatically regulate the step size of the descent gradient vector, combining fast convergence rate and low mean square error(MSE), and the CMA which is a special case of Godard's algorithm, to having multiple dispersion constants($R_p$).

Application of an Iterative 2D Equalizer to Holographic Data Storage Systems (반복 2차 등화기의 홀로그래픽 데이터 저장 장치 적용)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.1-5
    • /
    • 2012
  • At the present time when the limits of the magnetic storage systems appear, the holographic data storage (HDS) devices with high data transfer rate and high recording density are emerging as attractive candidates for next-generation optical storage devices. In this paper, to effectively improve the detection performance that is degraded by the two-dimensional inter-symbol interference under the HDS channel environment and the pixel misalignment, an iterative two-dimensional equalization scheme is proposed based on the contraction mapping theorem. In order to evaluate the performance of the proposed scheme, for various holographic channel environments we measure the BER performance using computer simulation and compare the proposed one with the conventional threshold detection scheme, which verifies the superiority of the proposed scheme.

Adaptive SFBC-OFDM with Pre-equalizer under Time-varying Multipath Fading Channel (시변 다중 경로 페이딩 환경에서 사전 등화기 기반 적응 변조 SFBC-OFDM 시스템에 관한 연구)

  • 고정선;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.623-630
    • /
    • 2004
  • The adaptive modulation along with SFBC transmit diversity is a very effective method to increase the capacity of an OFDM system. However, severe performance degradation is resulted when inter-symbol interference is applied due to frequency-selective fading in mobile communications. In this paper, we have proposed and analyzed an OFDM system with SFBC transmit diversity and adaptive modulation scheme based on pre-equalization methods, in order to increase the data transmission rate in the downlink without much increase in system complexity. By introducing subchannel grouping and the pre-equalization method among adjacent subchannels, we could enhance the efficiency of the adaptive modulation a lot. By computer simulation, it has been proven that the proposed schemes show a better BER and throughput performance than the conventional schemes under severely time-varying multipath fading channel.

Performance Analysis of Underwater Acoustic Communication Systems with Turbo Equalization in Korean Littoral Sea (한국 연근해 환경에서 터보 등화기를 이용한 수중음향통신 시스템 성능 분석)

  • Park, Tae-Doo;Han, Jeong-Woo;Jung, Ji-Won;Kim, Ki-Man;Lee, Sang-Kook;Chun, Seung-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The performance of underwater acoustic communication system is sensitive to the ISI(Inter-Symbol Interference) due to delay spread develop of multipath signal propagation. The equalizer is used to combat the ISI. In this paper, the performances of underwater acoustic communication with turbo equalizer were evaluated by real data collected in Korean littoral sea. As a result, when one iterative decoding using turbo equalizer is applied, the performance was improved 1.5 dB than the case of the non-iterative equalizer at BER $10^{-4}$. In the case of two or three iterations the performance was enhanced about 3.5 dB, but the performance wasn't improved any more in the case of more than three times.

A Novel Channel Compensation and Equalization scheme for an OFDM Based Modem (OFDM 전송시스템의 새로운 채널 보상 및 등화 기법)

  • Seo, Jung-Hyun;Lee, Hyun;Cheong, Cha-Keon;Cho, Kyoung-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.1009-1018
    • /
    • 2003
  • A new fading channel estimation technique is proposed for an OFDM based modem In the ITS system. The algorithm is based on the transfer function extraction of the channel using the pilot signals and compensated the channel preceding the equalization. The newly derived algorithm is division-free arithmetic operations allows the faster circuit operation and the smaller circuit size. Proposed techniques compensate firstly the distortion which is generated at fading channels and secondly eliminate inter-symbol interference. All algorithms are suitability estimated and improved for a system implementation using digital circuits. As the results, the circuit size is reduced by 20% of the conventional design and achieved about 10% performance improvement at low SNR under 10dB in case of ITS system adapted 16-QAM mode.