• Title/Summary/Keyword: Inter sand layer

Search Result 5, Processing Time 0.017 seconds

Model Test on the Effect of the Depth of Revetment by Inter Sand Layer in Soft Ground (모형토조 실험을 이용한 연약지반내 중간모래층이 호안제방하부 강제치환 깊이에 미치는 영향 연구)

  • Chung, Hyung-Sik;Bang, Chang-Kuk;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.956-965
    • /
    • 2005
  • In this paper, the effect on the forced replacement depth of the revetment in soft soil with inter sand layer is analyzed by model test. In the result, the forced replacement occur in 60 second from filling the embankment material. The shape of the forced replacement depth is like to punching shape. Then, in case of thin inter sand layer and near the embankment, the forced replacement depth of inter sand layer case is more than only clayed soil case.

  • PDF

A Study on Replacement Depth in Soft Soil with Inter Sand Layer (중간 모래층이 있는 연약지반내 제방하부 강제치환 깊이 산정에 관한 연구)

  • Chung, Hyung-Sik;Bang, Chang-Kug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.61-71
    • /
    • 2003
  • On the soft soil consisted of silty clay, the compulsion replacement method is useful for revetment and its safety is very much affected by compulsion replacement depth. Usual method calculating the compulsion replacement depth on silty clay is considered the bearing capacity of soft soil with undrained shear strength increase from ground surface and weight of revetment. But according to soil deposit, there are some cases of soft soil with inter sand layer or clayed silt, which affect the compulsion replacement depth. In this paper, the compulsion replacement depth on soft soil with inter sand layer is analyzed by layered weighted average bearing capacity considering influence effect of Perloff et al.(1967) and compared with numerical method(FLAC). In the result, the calculated depth from numerical method is nearest to layered weighted average bearing capacity in case that contact width under revetment is $0.2B_o$(soft soil with inter sand layer), $0.5B_o$(only soft soil) and the effect of contact width under revetment is less than undrained shear strength, thickness and location of inter sand layer. Also the compulsion replacement depth is as much as the inter sand thickness($d_2/B_o$) is thinner, the inter sand layer location($d_1/B_o$) is farther, and undrained shear strength is less.

  • PDF

A study on the granulometric and clastshape characteristic of gravel terrace deposit at Jeongdongjin area (정동진 단구 자갈층과 충진 물질의 입도 및 형상 특성에 대한 연구)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-33
    • /
    • 2016
  • Samples from newly exposed outcrop of sedimentary layers forming Jeongdongjin coastal terrace in Gangreung area are collected and analyzed to find the sedimentary environment. The site are located at the gentle hillslope of the terrace surface area. The height of the outcrop is about 8m and the altitude of it's highest part is 68~73m MSL. The lowest part of this out crop is the partly consolidated sand layer with gravel veneer within it. It is found that this part is not in-situ weathered sand stone through the OSL method. This sand layer is overlain by the gravel layer with sand matrix. The shapes of the gravels from this part are mainly 'platy', 'elongated', and 'bladed' by the index of Sneed and Folk(1958). In addition, mean roundness is not so high. It is sceptical to regard this part as marine sediments which are continuously exposed to erosional processes. The boundary between the lowest sand layer and gravel layer showing the abrupt change in forming material without any mixture or transitional zone, so gravels are seemed to deposited after some degree of consolidation of the lowest sand layer. In addition, the hight of the boundary between layers are changed by the place, so the surface of the partly consolidated sand layer is not flat and has irregularity on topography when it buried by gravels. Main part of this out crop is the poorly sorted coarse gravel(22.4mm) with sand matrix($1.36{\phi}$) layer with at least 2m thick covering the relatively fine gravels discussed above. Over 20% of particles have 'very platy', 'very elongated' and 'very bladed' shape and only less than 5% of particles have 'compact' shape, So this particles are also very hard to be regard as marine gravels which are abraded by marine processes. It can be concluded that this gravel layer formed by fluvial processes rather than coastal processes base on the form of the clast and sedimentary structure. The gravel layer is covered by fine($3{\sim}4{\phi}$) material layers of psudo-gleization which showing inter-bedding of red and white layers. Chemical composition of matrix and other fine materials should be analyzed in further studies. It is attempted to fine the burial ages of the sediment using OSL method, but failed by the saturation. So it can be assumed that these sediments have be buried over 120ka.

Sedimentary Facies and Processes in the Ulleung Basin and Southern East Sea (동해남부해역과 울릉분지의 퇴적상과 퇴적작용)

  • Lee, Byoung-Kwan;Kim, Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.160-166
    • /
    • 2007
  • The coarse deposit with a lower mud content adjacent to the shelf of the southern East Sea is probably a "relict" sediment deposited in response to a lower stand of sea level during the Pleistocene. The sediment that developed on the slope and in the deep sea was river-borne primarily and was secondarily reworked or redistributed by the Tsushima Warm Current from the East China Sea. The clay mineralogy of the area suggests various sources of fine-grained sediment from adjacent rivers, the Korea Strait, volcanic material from Ulleung Island, and the Japan coast. Massive sand, bioturbated mud, homogeneous mud, and laminated mud were the dominant facies found in the core sediments from the study area. The massive sand was mainly volcanic ash from an eruption on Ulleung Island (9300 yr BP) and consisted of colorless pumiceous glass and a black scoriaceous type. The sedimentation rates on the slope, based on the Ulleung-Oki ash layer, were about 10cm/ky higher than in the basin. Other than the coarse-grain sediment, the mean size of the fine sediment dominating the bioturbated and homogeneous muds in the basin and the laminated mud on the slope was 6-10 phi. This indicates a difference in the major sedimentary process: hemipelagic sedimentation in the Ulleung Basin and mass flow deposition, such as turbidite, on the slope of the southern East Sea.

Feasibility Evaluation for Remediation of Groundwater Contaminated with Heavy Metal using Calcium Polysulfide in Homogeneous media (균질한 매질 내 Calcium polysulfide 주입에 따른 고농도 중금속 오염 지하수 정화 타당성 검토)

  • Hyeon Woo Go;Jin Chul Joo;Kyoungphile Nam;Hee Sun Moon;Sung Hee Yoon;Dong Hwi Lee;So Ye Jang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • In this study, column tests using relatively uniform Jumunjin sand media were conducted to evaluate the feasibility of calcium polysulfide (CaSx, CPS) in removing high concentration of Zn2+ in groundwater. The injected CPS solution reacted rapidly with Zn2+ in artificial groundwater and effectively reduced Zn2+ by more than 99% through metal sulfide precipitation. Since the density (d = 1.27 g/cm3 ) of CPS solution was greater than that of water, CPS solution settled down rapidly while capturing Zn2+ and formed stable CPS layer similar to dense nonaqueous phase liquid. Mass balance analysis on Zn2+ in CPS solution suggested that CPS solution effectively reacted with Zn2+ to form metal sulfide precipitates except for high groundwater seepage velocity of 400 cm/d. With greater groundwater seepage velocity, injected CPS did not completely dissolve at the CPS-water interface, but a partially-misible CPS layer continuously moved and reacted with Zn2++ in the direction of groundwater flow. Since hydraulic conductivity (Kh) decreased slightly due to the generated metal precipitates in the inter-pores of media, injection of CPS solution should be optimized to prevent clogging. As evidenced by both XRF and SEM/EDS results, ZnS precipitates were clearly observed through the reaction between the CPS solution and Zn2+. Further study is warranted to evaluate the feasibility of CPS to remove high-concentration heavy metalcontaminated groundwater in complex and heterogeneous media.