• Title/Summary/Keyword: Intensity-modulated radiation therapy (IMRT)

Search Result 202, Processing Time 0.034 seconds

Automatic Multileaf Collimation Quality Assurance for IMRT using Electronic Portal Imaging

  • Jin, Ho-Sang;Jason W. Sohn;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.305-308
    • /
    • 2002
  • More complex radiotherapy techniques using multi leaf collimation(MLC) such as intensity-modulated radiation therapy(IMRT) has been increasing the significance of verification of leaf position and motion. Due to the reliability and robustness, quality assurance(QA) of MLC is usually performed with portal films. However, the advantage of ease of use and capability of providing digital data of electronic portal imaging devices(EPIDs) have attracted many attentions as alternatives of films for routine quality assurance in spite of the concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In our work, the method of routine QA of MLC using electronic portal imaging(EPI) was developed. The verification of availability of EPI images for routine QA was performed by comparison with those of the portal films which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed test patterns of dynamic MLC were applied to image acquisition. Quantitative off-line analysis using edge detection algorithm enhanced the verification procedure in addition to on-line qualitative visual assessment. In conclusion, the EPI is available enough for routine QA with the accuracy of portal films.

  • PDF

Development of a Verification Tool in Radiation Treatment Setup (방사선치료 시 환자자세 확인을 위한 영상 분석 도구의 개발)

  • 조병철;강세권;한승희;박희철;박석원;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • In 3-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), many studies on reducing setup error have been conducted in order to focus the irradiation on the tumors while sparing normal tissues as much as possible. As one of these efforts, we developed an image enhancement and registration tool for simulators and portal images that analyze setup errors in a quantitative manner. For setup verification, we used simulator (films and EC-L films (Kodak, USA) as portal images. In addition, digital-captured images during simulation, and digitally-reconstructed radiographs (DRR) can be used as reference images in the software, which is coded using IDL5.4 (Research Systems Inc., USA). To improve the poor contrast of portal images, histogram-equalization, and adaptive histogram equalization, CLAHE (contrast limited adaptive histogram equalization) was implemented in the software. For image registration between simulator and portal images, contours drawn on the simulator image were transferred into the portal image, and then aligned onto the same anatomical structures on the portal image. In conclusion, applying CLAHE considerably improved the contrast of portal images and also enabled the analysis of setup errors in a quantitative manner.

  • PDF

The dosimetric impact on treatment planning of the Dynamic MLC leaf gap (동적 다엽콜리메이터의 Leaf gap이 전산화 치료계획에 미치는 영향)

  • Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.

A Study on the Reduction of Organ Motion from Respiration (호흡 운동에 의한 내부 장기의 움직임 감소에 관한 연구)

  • Kim Jae-Gyoun;Lee Dong-Han;Lee Dong-Hoon;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Oh Won-Yong;Ji Young-Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • To deal with tumor motion from respiration is one of the important issues for the advanced treatment techniques, such as the intensity modulated radiation therapy (IMRT), the image guided radiation therapy (IGRT), the three dimensional conformal therapy (3D-CRT) and the Cyber Knife. Studies including the active breath control (ABC) and the gated radiation therapy have been reported. Authors have developed the device for reducing the respiration effects and the diaphragm motions with this device were observed to determined the effectiveness of the device. The device consists of four belts to immobilize diaphragm motion and the vacuum cushion. Diaphragm motions without and with device were monitored fluoroscopically. Diaphragm motion ranges were found to be 1.14 ~ 3.14 cm (average 2.14 cm) without the device and 0.72~1.95 cm (average 1.16 cm) with the device. The motion ranges were decreased 20 ~ 68.4% (average 44.9%.) However, the respiration cycle was increased from 4.4 seconds to 3.7 seconds. The CTV-PTV margin could be decreased significantly with the device developed in this study, which may be applied to the treatments of the tumor sited diaphragm region.

  • PDF

Dosimetric Evaluation of Static and Dynamic Intensity Modulated Radiation Treatment Planning and Delivery (세기조절방사선치료에서 조사방법이 빔 파라미터 및 선량에 미치는 영향에 대한 연구)

  • Kim Sung-Kyu;Kim Myung-Se;Yun Sang-Mo
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2006
  • The two commonly used methods in delivering intensity modulated radiation therapy (IMRT) plan are the dynamic (sliding window) and static (stop and shoot) mode. In this study, the two IMRI delivery techniques are compared by measuring point dose and dose distributions. Using treatment planning system, clinical target volume (CTV) was created as a sphere with various diameter (3 cm, 7 cm, 12 cm). Two IMRT plans were peformed to deliver 200 cGy to the CTV in dynamic and static mode. The two plans were delivered on a phantom and central point dose and dose distributions were measured. The central point dose differences between static and dynamic IMRT delivery were 0.2%, 0.2% and 0.4% when the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. The differences In volume receiving 90% of the proscribed dose were 2.7%, 2.2%, and 2.9% for the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. For lung cancer patients, the differences in central point dose were 0.2%, 0.2%, and 0.4% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. The differences in volume receiving 90% of the prescribed dose were 2.7%, 4.8%, and 9.1% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. In conclusion, it was possible to deliver IMRT plans using dynamic mode of MLC operation although the loaves are In motion during radiation delivery.

  • PDF

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

Comprehensive Clinical Study of Concurrent Chemotherapy Breathing IMRT Middle Part of Locally Advanced Esophageal Cancer (국소진행성 중위부 식도암의 동시항암화학 호흡동조 세기변조방사선치료의 포괄적인 임상고찰)

  • Jung, Jae Hong;Kim, Seung-Chul;Moon, Seong-Kwon
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.463-475
    • /
    • 2015
  • The standard treatment of locally advanced type of mid-esophageal cancer is concurrent chemoradiation therapy (CRT). We evaluated the feasibility of chemotherapy with adding docetaxel to the classical basic regimens of cisplatin plus 5-fluorouracil (5-FU) and radiotherapy up to 70.2 Gy using dose escalations for esophageal cancer. It was possible to escalate radiation treatment dose up to 70.2 Gy by the respiratory-gated intensity-modulated radiotherapy (gated-IMRT) based on the 4DCT-simulation, with improving target coverage and normal tissue (ex., lung, heart, and spinal cord) sparing. This study suggested that the definitive chemo-radiotherapy with docetaxel, cisplatin, and 5-fluorouracil (i.e., DCF-R) and gating IMRT is tolerable and active in patients with locally advanced mid-esophageal cancer (AEC).

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.

A Feasibility Study on the Abdomen Immobilization with Air Injected Balloon Blanket (공기 주입형 풍선 담요를 이용한 복부 고정 가능성 연구)

  • 서예린;안승도;이상욱;김종훈;신승애;최은경;서태석;이병용
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.176-180
    • /
    • 2002
  • The demand for a better immobilization device has been increased in the radiation oncology field. Especially, it is essential to have a reliable and practical immobilization tool for the whole body radio-surgery and the IMRT(intensity modulated radiation therapy). A new method to immobilize the abdomen for the external beam radiation treatment was developed. The air-injected balloon blanket (AIBB) was designed as an immobilization device. As the air was injected into the AIBB, it pressed down the patient's abdomen and fixed the patient. The AIBB played a useful role to grab the patients' motion. Displacement of the abdomen in the anterior-posterior direction, which showed moving most during the respiration, reduced by more than 5 mm. Patients' movements from the breathing were reduced. The experimental results revealed that the AIBB could be used for the clinic.

  • PDF