• 제목/요약/키워드: Intensity-modulated radiation therapy (IMRT)

Search Result 202, Processing Time 0.035 seconds

Advances in Radiation Oncology in New Millennium in Korea (21세기 방사선종양학의 전망:최근의 진보와 한국에서의 발전)

  • Huh, Seung-Jae;Park, Chan-Il
    • Radiation Oncology Journal
    • /
    • v.18 no.3
    • /
    • pp.167-176
    • /
    • 2000
  • The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy, IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally patterns-of-care study about major cancers.

  • PDF

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients (호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석)

  • Kim, Youngkuk;Lim, Sangwook;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Ro, Tae Ik
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2014
  • To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

Evaluation of Dosimetric Leaf Gap (DLG) at Different Depths for Dynamic IMRT (동적 세기조절방사선치료에서 깊이에 따른 DLG변화 분석)

  • Chang, Kyung Hwan;Kwak, Jungwon;Cho, Byungchul;Jeong, Chiyoung;Bae, Jae Beom;Yoon, Sang Min;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • This study is to evaluate thedosiemtric leaf gap (DLG) at different depths for dynamic intensity-modulated radiation therapy (IMRT) in order to evaluate the absolute dose and dose distribution according to the different positions of tumors and compare the measured and planned the multileaf collimator (MLC) transmission factor (T.F.) and DLG values. We used the 6 MV and 15 MV photon beam from linear accelerator with a Millenium 120 MLC system. After the import the DICOM RT files, we measured the absolute dose at different depths (2 cm, 5 cm, 10 cm, and 15 cm) to calculate the MLC T. F. and DLG. For 6 MV photon beam, the measured both MLC T. F. and DLG were increased with the increase the measured depths. When applying to treatment planning systemas fixed transmission factor with its value measured under the reference condition at depth of 5 cm, although the difference fixed and varied transmission factor is not significant, the dosiemtric effect could be presented according to the depth that the tumor is placed. Therefore, we are planning to investigate the treatment planning system whichthe T. F. and DLG factor according to at the different depths can be applied in the patient-specific treatment plan.

Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases (두경부암 환자에 대한 선량체적 히스토그램에 따른 토모치료외 선형가속기기반 세기변조방사선치료의 정량적 비교)

  • Kim, Dong-Wook;Yoon, Myong-Geun;Park, Sung-Yong;Lee, Se-Byeong;Shin, Dong-Ho;Lee, Doo-Hyeon;Kwak, Jung-Won;Park, So-Ah;Lim, Young-Kyung;Kim, Jin-Sung;Shin, Jung-Wook;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.

  • PDF

Prognostic value of nodal SUVmax of 18F-FDG PET/CT in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy

  • Lee, So Jung;Kay, Chul-Seoung;Kim, Yeon-Sil;Son, Seok Hyun;Kim, Myungsoo;Lee, Sea-Won;Kang, Hye Jin
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.306-316
    • /
    • 2017
  • Purpose: To investigate the predictive role of maximum standardized uptake value ($SUV_{max}$) of 2-[$^{18}F$]fluoro-2-deoxy-D-glucose($^{18}F-FDG$) positron emission tomography/computed tomography (PET/CT) in nasopharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT). Materials and Methods: Between October 2006 and April 2016, 53 patients were treated with IMRT in two institutions and their PET/CT at the time of diagnosis was reviewed. The $SUV_{max}$ of their nasopharyngeal lesions and metastatic lymph nodes (LN) was recorded. IMRT was delivered using helical tomotherapy. All patients except for one were treated with concurrent chemoradiation therapy (CCRT). Correlations between $SUV_{max}$ and patients' survival and recurrence were analyzed. Results: At a median follow-up time of 31.5 months (range, 3.4 to 98.7 months), the 3-year overall survival (OS) and disease-free survival (DFS) rates were 83.2% and 77.5%, respectively. In univariate analysis, patients with a higher nodal pre-treatment $SUV_{max}$ (${\geq}13.4$) demonstrated significantly lower 3-year OS (93.1% vs. 55.5%; p = 0.003), DFS (92.7% vs. 38.5%; p < 0.001), locoregional recurrence-free survival (100% vs. 50.5%; p < 0.001), and distant metastasis-free survival (100% vs. 69.2%; p = 0.004), respectively. In multivariate analysis, high pre-treatment nodal $SUV_{max}$ (${\geq}13.4$) was a negative prognostic factor for OS (hazard ratio [HR], 7.799; 95% confidence interval [CI], 1.506-40.397; p = 0.014) and DFS (HR, 9.392; 95% CI, 1.989-44.339; p = 0.005). Conclusions: High pre-treatment nodal $SUV_{max}$ was an independent prognosticator of survival and disease progression in nasopharyngeal carcinoma patients treated with IMRT in our cohort. Therefore, nodal $SUV_{max}$ may provide important information for identifying patients who require more aggressive treatment.

Analysis of changes in dose distribution due to respiration during IMRT

  • Shin, Jung-Suk;Shin, Eun-Hyuk;Han, Young-Yih;Ju, Sang-Gyu;Kim, Jin-Sung;Ahn, Sung-Hwan;Kim, Tae-Gyu;Jeong, Bae-Kwon;Park, Hee-Chul;Ahn, Young-Chan;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • Purpose: Intensity modulated radiation therapy (IMRT) is a high precision therapy technique that can achieve a conformal dose distribution on a given target. However, organ motion induced by respiration can result in significant dosimetric error. Therefore, this study explores the dosimetric error that result from various patterns of respiration. Materials and Methods: Experiments were designed to deliver a treatment plan made for a real patient to an in-house developed motion phantom. The motion pattern; the amplitude and period as well as inhale-exhale period, could be controlled by in-house developed software. Dose distribution was measured using EDR2 film and analysis was performed by RIT113 software. Three respiratory patterns were generated for the purpose of this study; first the 'even inhale-exhale pattern', second the slightly long exhale pattern (0.35 seconds longer than inhale period) named 'general signal pattern', and third a 'long exhale pattern' (0.7 seconds longer than inhale period). One dimensional dose profile comparisons and gamma index analysis on 2 dimensions were performed. Results: In one-dimensional dose profile comparisons, 5% in the target and 30% dose difference at the boundary were observed in the long exhale pattern. The center of high dose region in the profile was shifted 1 mm to inhale (caudal) direction for the 'even inhale-exhale pattern', 2 mm and 5 mm shifts to exhale (cranial) direction were observed for 'slightly long exhale pattern' and 'long exhale pattern', respectively. The areas of gamma index >1 were 11.88 %, 15.11%, and 24.33% for 'even inhale-exhale pattern', 'general pattern', and 'long exhale pattern', respectively. The long exhale pattern showed largest errors. Conclusion: To reduce the dosimetric error due to respiratory motions, controlling patient's breathing to be closer to even inhaleexhale period is helpful with minimizing the motion amplitude.

Feasibility Study of a Custom-made Film for End-to-End Quality Assurance Test of Robotic Intensity Modulated Radiation Therapy System

  • Kim, Juhye;Park, Kwangwoo;Yoon, Jeongmin;Lee, Eungman;Cho, Samju;Ahn, Sohyun;Park, Jeongeun;Choi, Wonhoon;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.189-195
    • /
    • 2016
  • This paper aims to verify the clinical feasibility of a custom-made film created by a laser cutting tool for End-to-End (E2E) quality assurance in robotic intensity modulated radiation therapy system. The custom-made film was fabricated from the Gafchromic EBT3 film with the size of $8^{{\prime}{\prime}}{\times}10^{{\prime}{\prime}}$ using a drawing that is identical to the shape and scale of the original E2E film. The drawing was created by using a computer aided design program with the image file, which is obtained by scanning original E2E film. Beam delivery and evaluations were respectively performed with the original film and the custom-made film using fixed-cone collimator on three tracking modes: 6D skull (6DS), Xsight spine (XS), and Xsight lung (XL). The differences between total targeting errors of the original and custom-made films were recorded as 0.17 mm, 0.3 mm, and 0.17 mm at 6DS, XS, and XL tracking modes, respectively. This indicates that the custom-made film could yield nearly equivalent results to those of the original E2E film, given the uncertainties caused by distortions during film scanning and vibrations associated with film cutting. By confirming the clinical feasibility of a custom-made film for E2E testing, it can be expected that economic efficiency of the testing will increase accordingly.

Feasibility Assessment of Physical Factors of Rectal Cancer Short-Course Chemoradiotherapy with Delayed Surgery

  • Koo, Jihye;Chung, Mijoo;Chung, Weon Kuu;Jin, Sunsik;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.143-149
    • /
    • 2018
  • To verify the correlations between the clinical outcomes and physical factors of short-course chemoradiotherapy (SCRT) and long-course chemoradiotherapy (LCRT) with delayed surgery in patients with rectal cancer. Seventy-two patients with rectal cancer were enrolled in this study. Nineteen patients were treated with SCRT (25 Gy, 5 fractions) by intensity-modulated radiation therapy (IMRT), and 53 patients were treated with LCRT (50.4 Gy, 28 fractions) by three-dimensional conformal radiation therapy (3DCRT). Various physical factors for the target and organs at risk (OARs) were calculated to compare the clinical outcomes. The organ equivalent dose (OED) and lifetime attributable risk (LAR) of bowels and bladders were similar between the SCRT and LCRT groups, whereas the values of femurs were higher in the LCRT group. The equivalent uniform dose and normal tissue complication probability were higher in the LCRT than the SCRT group for most organs. Treatment complications, including anastomotic leakage, bowel adhesion, and hematologic toxicity, were not significantly different between SCRT and LCRT groups. CIs were $0.84{\pm}0.2$ and $0.61{\pm}0.1$ for SCRT and LCRT, respectively. The CVIs were $1.07{\pm}0.0$ and $1.10{\pm}0.1$, and the HIs were $0.09{\pm}0.0$ and $0.11{\pm}0.1$ for SCRT and LCRT, respectively. The sphincter-saving rates were 89.5% and 94.3% for SCRT and LCRT, respectively. The complete pathologic remission rates were 21.1% and 13.2%, and the down-staging rates were 47.4% and 26.4% for SCRT and LCRT, respectively. SCRT with IMRT is comparable to conventional LCRT in both physical indexes and clinical outcome. The preoperative SCRT, compensated by IMRT, is an effective and safe modality.

Film Dosimetry for Intensity Modulated Radiation Therapy : Dosimetric Evaluation (필름을 사용한 세기변조치료법에 대한 선량측정)

  • Ju Sang Gyu;Yeo Inhwan Jason;Huh Seung Jae;Choi Byung Ki;Park Young Hwan;Ahn Yong Chan;Kim Dae Yong;Kong Young Kun
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • Purpose : X-ray film over responds to low-energy photons in relative photon beam dosimetry because its sensor is based on silver bromide crystals, which are high-Z molecules. This over-response becomes a significant problem in clinical photon beam dosimetry particularly in regions outside the penumbra. In intensity modulated radiation therapy (IMRT), the radiation field is characterized by multiple small fields and their outside-penumbra regions. Therefore, in order to use film dosimetry for IMRT, the nature the source of the over-response in its radiation field need to be known. This study is aimed to verify and possibly improve film dosimetry for IMRT. Materials and Method : Modulated beams were constructed by a combination of five or seven different static radiation fields using 6 MeV X-rays. In order to verify film dosimetry, we used X-ray film and an ion chamber were used to measure the dose profiles at various depths in a phantom. In addition, in order to reduce the over-response, 0.01 inch thick lead filters were placed on both sides of the film. Results : The measured dose profiles showed a film over-response at the outside-penumbra and low dose regions. The error increased with depths and approached 15% at a maximum for the field size of $15{\times}15cm^2$ at 10 cm depth. The use of filters reduced the error to 3%, but caused an under-response of the dose in a perpendicular set-up. Conclusion : This study demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy Photons. The use of filers can enhance the accuracy in film dosimetry for IMRT. In this regard, the use of optimal filter conditions is recommended.