• 제목/요약/키워드: Intensity of Vortices

검색결과 47건 처리시간 0.024초

실린더의 회전 주파수 진동이 Taylor 와류에 미치는 영향 (EFFECTS OF OSCILLATING FREQUENCY ON TAYLOR VORTICES)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.95-105
    • /
    • 2009
  • We study time-periodic Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the frequency of inner cylinder, we investigate the change of Taylor vortices at a given amplitude and a mean angular velocity. With a small frequency of modulation, we find that Taylor vortices appear and disappear periodically. With a higher frequency, Taylor vortices do not disappear, but the intensity of Taylor vortices modulates periodically. As the frequency increases, Taylor vortices modulate harmonically.

Analysis of Flow around a Rotating Marine Propeller using PIV Techniques

  • Lee Sang Joon;Paik Bu Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.169-175
    • /
    • 2004
  • The characteristics of flow around a rotating propeller were investigated using PIV technique. For each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$four hundred instantaneous velocity fields were ensemble averaged to investigate the spatial evolution of the flow around a propeller. The phase-averaged mean velocity fields show that the viscous wake formed by the boundary layers developed on the blade surfaces and the slipstream contraction in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. The boundary layer developed along the ship hull bottom surface of the ship stern provides a strong turbulent shear layer, affecting the vortex structure in the propeller near-wake. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. The turbulence intensity has large values around the tip and trailing vortices. As the wake moves downstream, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and adjacent wake flow.

  • PDF

저어널 베어링에서의 마찰감소현상에 대한 실험적 연구 (An Experimental Study on Friction Reduction in Journal Bearings)

  • 이득우;김경웅
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.298-304
    • /
    • 1986
  • 본 연구에서는 첨가할 고분자로서 윤활유에 일반적으로 점도지수 향상제로 사용되는 PIB(polyisobutylene)를 사용하여, 되도록 실제 베어링에 가까운 조건에서 Toms효과에 대해 알아 본다.

원형 충돌 제트에서의 유동 및 온도 특성 (Flow and Temperature Characteristics in a Circular Impinging Jet)

  • 김정우;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정 (Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique)

  • 이상준;백부근;윤정환
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정 (3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV)

  • 백부근;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

고선회 터빈 동익 팁 표면에서의 열전달 특성 (Heat Transfer Characteristics on the Tip Surface of a High-Turning Turbine Rotor Blade)

  • 이상우;문현석
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.207-215
    • /
    • 2008
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. At the Reynolds number of $2.09{\times}10^5$, heat/mass transfer coefficients are measured for the tip gap height-to-chord ratio, h/c, of 2.0% at turbulence levels of Tu = 0.3 and 14.7%. A tip-surface flow visualization is also performed for h/c = 2.0% at Tu = 0.3%. The results show that there exists a strong flow separation/re-attachment process, which results in severe local thermal load along the pressure-side corner, and a pair of vortices named "tip gap vortices" in this study is identified along the pressure and suction-side tip corners near the leading edge. The loci and subsequent development of the pressure- and suction-side tip gap vortices are discussed in detail. The combustor-level high inlet turbulence, which increases the tip-surface heat/mass transfer, provides more uniform thermal-load distribution.

가스터빈 베인 끝벽의 열전달 특성 및 정압분포 측정 (Measurement of Heat Transfer and Pressure Distributions on a Gas Turbine Vane Endwall)

  • 이용진;신소민;곽재수
    • 한국항공운항학회지
    • /
    • 제14권2호
    • /
    • pp.33-38
    • /
    • 2006
  • Heat transfer coefficients and static pressure distributions on a gas turbine vane endwall were experimentally investigated in a 5 bladed linear cascade. The Reynolds number based on an axial chord length and the cascade exit velocity was 500,000. Both heat transfer and pressure measurements on the vane endwall were made at the two different turbulence intensity levels of 6.8% and 10.8%. Detailed heat transfer coefficient distributions on the vane endwall region were measured using a hue detection based transient liquid crystals technique. Results show various regions of high and low heat transfer coefficients on the vane endwall surface due to several types of secondary flows and vortices. Heat transfer coefficient and endwall static pressure distributions showed similar trends for both turbulence intensity, however, the averaged heat transfer coefficients for higher turbulence intensity case was higher than the lower turbulence intensity case by 15%.

  • PDF

로터 끝 슬롯의 공기역학적 효과에 대한 실험 연구 (Experimental study on the aerodynamic effects of slots at a rotor tip)

  • 신이수;이승철;김주하
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.39-48
    • /
    • 2023
  • In this study, we investigate the effects of slots installed on the tip of a rotor blade on aerodynamic characteristics. The slots weaken the strength and spatial coherence of the tip vortex at early vortex age and accelerate the dissipation of the generated tip vortex. Accordingly, the turbulence intensity of the rotor wake is reduced at both near and far wake, which leads to a reduction in broadband noise. Tonal noise is also reduced by mitigation of tip vortices, but tonal noise reduction is limited to a narrower range of azimuths than broadband noise due to the extinction of tip vortices. In addition, slots reduce both mean thrust and thrust fluctuations. Reduction in thrust fluctuations leads to a reduction in blade loading noise, resulting in a reduction in tonal noise.

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.