• 제목/요약/키워드: Intensity Function

Search Result 1,502, Processing Time 0.025 seconds

Comparison of Maximum Phonation Time Associated with the Changes in Vocal Intensity in Patients with Unilateral Vocal Fold Palsy and Sulcus Vocalis (성대마비와 성대구증의 강도 변화에 따른 최대발성지속시간 비교)

  • Choi, Se-Jin;Choi, Hong-Shik;Kim, Jae-Ock;Choi, Yae-Lin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.1
    • /
    • pp.125-131
    • /
    • 2012
  • The patients with incomplete glottic closure have an important feature decreasing the maximum phonation time (MPT) because airflow rate or air leakage is greater than people without voice disorders. Also they can appear a problem in the intensity regulation. This study analyzed MPT difference based on the comfortable intensity and louder intensity and the correlation between MPT and respiration volume of unilateral vocal fold palsy (UVFP) and sulcus vocalis (SV) group. The twenty with UVFP, the 21 with SV, the 21 normal subjects measured MPT in /a/ vowel prolongation task with comfortable intensity and louder intensity and compared analysis by measuring FVC, $FEV_1$, $FEV_1/FVC$ to analyze the correlation between MPT and respiration volume. First, a comparison of MPT according to the intensity between groups is that MPT of the normal group was statistically significant long compared to the patient group in comfortable intensity, but MPT between groups was not statistically significant difference in the louder intensity. Second, an analysis of the correlation between MPT and respiration volume is that this was statistically significant correlation between MPT in comfortable intensity and MPT in louder intensity. But this did not show statistically significant correlation between intensity and respiration volume. This study can be supported the preceding study results deduced that shorting MPT of the patient group compared to the normal group was originated in the problem of laryngeal valving mechanism at the level of vocal folds rather than a problem of respiratory function. Also at the phonation by varying the intensity, the result can deduce that in the case of patient group, the length of MPT had been improved by increasing the glottal closure ratio in the louder intensity. These results can support the theoretical basis that should be applied to the clinicians by varying the intensity at the voice evaluation and voice therapy for the patients with the glottis incompetence.

Application of the Photoelastic Experimental Hybrid Method with New Numerical Method to the High Stress Distribution (고응력 분포에 새로운 광탄성실험 하이브릿법 적용)

  • Hawong, Jai-Sug;Tche, Konstantin;Lee, Dong-Hun;Lee, Dong-Ha
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.

  • PDF

Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum (설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구)

  • 정재경;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF

CLASSIFICATION OF SINGULAR SOLUTIONS FOR THE POISSON PROBLEM WITH VARIOUS BOUNDARY CONDITIONS

  • Kim, Seok-Chan;Woo, Gyung-Soo;Kong, Soo-Ryoun
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.579-590
    • /
    • 2009
  • The precise form of singular functions, singular function representation and the extraction form for the stress intensity factor play an important role in the singular function methods to deal with the domain singularities for the Poisson problems with most common boundary conditions, e.q. Dirichlet or Mixed boundary condition [2, 4]. In this paper we give an elementary step to get the singular functions of the solution for Poisson problem with Neumann boundary condition or Robin boundary condition. We also give singular function representation and the extraction form for the stress intensity with a result showing the number of singular functions depending on the boundary conditions.

The Comparative Study of NHPP Software Reliability Model Based on Log and Exponential Power Intensity Function (로그 및 지수파우어 강도함수를 이용한 NHPP 소프트웨어 무한고장 신뢰도 모형에 관한 비교연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.445-452
    • /
    • 2015
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the reliability model with log and power intensity function (log linear, log power and exponential power), which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination($R^2$), for the sake of efficient model, was employed. Analysis of failure, using real data set for the sake of proposing log and power intensity function, was employed. This analysis of failure data compared with log and power intensity function. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the log type model is also efficient in terms of reliability because it (the coefficient of determination is 70% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can be able to help.

Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여)

  • Kim, Seon-Jin;Kim, Young-Sik;Jeong, Hyeon-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

Effects of Ohmic Thawing on the Physicochemical Properties of Frozen Pork

  • Kim, Jee-Yeon;Hong, Geun-Pyo;Park, Sung-Hee;Lee, Sung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.374-379
    • /
    • 2006
  • This study was carried out to investigate the physicochemical properties of frozen pork muscle which has been thawed using the ohmic thawing process, and to establish the optimal ohmic power intensity. The samples were frozen at $-40^{\circ}C$ and thawed at 0, 10, 20, 30, and 40 V by ohmic thawing. Increasing ohmic power intensity correlated with increased thawing rates. The relationship between ohmic power intensity and thawing rate can be represented as a polynomial function. The pH value decreased with increasing ohmic power intensity (p<0.05). With regard to color measurement, the $L^*$, a, and b values of thawing at all ohmic power intensities were not significantly different. The water holding capacity showed a peak value of 41.62% with an ohmic thawing intensity of 30 V. Cooking losses were lowest at the lowest ohmic thawing intensity of 10 V. Thiobarbituric acid reactive substance (TBARS) levels with all thawing processes were slightly higher than that of the control (p<0.05). Increasing ohmic power intensity did not tend to change the total volatile basic nitrogen (TVBN) value.

A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method (투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

The Changes in the Closed Qutient of Trained Singers and Untrained Controls Under Varying Intensity at a Constant Vocal Pitch (음도 고정 시 강도 변화에 따른 일반인과 성악인 발성의 성대접촉률 변화 특성의 비교)

  • Kim, Han-Su;Jeon, Yong-Sun;Chung, Sung-Min;Cho, Kun-Kyung;Park, Eun-Hee
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.16 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • Background and Objectives : The most important two factors of the voice production are the respiratory function which is the power source of voice and the glottic closure that transform the air flow into sound signals. The purpose of this study was to investigate the differences between trained singers and untrained controls under varying intensity at a constant vocal pitch by simulataneous using the airway interruption method and electroglottography(EGG). Materials and Methods : Under two different intensity condition at a constant vocal pitch(/G/), 20(Male 10, Female 10) trained singers were studied. Mean flow rate(MFR), subglottic pressure(Psub) and intensity were measured with aerodynamic test using the Phonatory function analyzer. Closed quotients(CQ), jitter and shimmer were also investigated by electroglottography using Lx speech studio. These data were compared with that of normal controls. Results : MFR and Psub were increased on high intensity condition in all subject groups but there was no statistically significance. Statistically significant increasing of CQ. were observed in male trained singers on high intensity condition (untrained male : 51.31${\pm}$3.70%, trained male :55.52${\pm}$6.07%, p=.039). Shimmer percent, one of the phonatory stability parameters, was also decreased statistically in all subject groups(p<.001). Conclusion : The trained singers' phonation was more efficient than untrained singers. The result means that the trained singers can increase the loudness with little changing of mean flow rate, subglottic pressure but more increasing of glottic closed quotients.

  • PDF