• Title/Summary/Keyword: Intensity Analysis

Search Result 5,117, Processing Time 0.036 seconds

The Effect of Frequency and Intensity of /a/ Phonation on the Result of Acoustic Analysis (발성시 음도 및 강도의 변화가 음성분석검사 결과에 미치는 영향)

  • 손영익;윤영선;권중근;추광철
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 1997
  • Measuring phonatory stability using MDVP(Multi-dimensional voice program, Kay Elemetrics Corp., NJ, USA) are becoming popular in many Korean clinics and laboratories, yet questions about standardization and reference values have remained. The purpose of present study was to examine the effects of frequency and intensity variation on the results of acoustic analysis related to phonatory stability. Twenty young adults(ten females and ten males) were asked to sustain vowel /a/ for more than 3 seconds under 9 different pitch and loudness conditions. Using MDVP, nine voice samples were analyzed, and jitter percent, fundamental frequency variation, shimmer percent, peak amplitude variation, noise to harmonic ratio, amplitude tremor intensity index, and degree of subharmonics were compared. The results showed that intensity changes can significantly affect various phonatory stability measures, and the lowest perturbation values can be obtained from slightly louder(10dB) phonatory condition than comfortable level phonation.

  • PDF

Slope Stability Analysis of Filldams by Modified Seismic Intensity Method (수정진도법에 의한 댐사면 안정해석)

  • 신동훈;이종욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.223-228
    • /
    • 2000
  • The current slope stability analysis of a filldam is based on the limit equilibrium method, and in calculation of safety factor during earthquake, adopts the seismic intensity method in which it considers a uniform seismic force from dam foundation to crest. However the observed behaviour of filldam during earthquake shows some different behaviour in that at the crest the measured acceleration is usually several times the ground acceleration. In this study, slope stability calculations of a filldam are provided based on the modified seismic intensity method, which can take into account the amplification phenomena of acceleration in the upper part of dam. And also the results of calculations are compared with that of current seismic intensity method.

  • PDF

Stress Intensity Factor Analysis of Nozzle Considering Pressure and Heat Transfer on Crack Face (균열면에 작용하는 내압과 열전달의 영향을 고려한 노즐부의 응력확대계수 해석)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Gang, Gi-Ju;Beom, Hyeon-Gyu;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2252-2258
    • /
    • 2000
  • In order to investigate the effect of nozzle on stress concentration in pressure vessels, three dimensional finite element analyses were performed. The results were compared with those for corresponding two dimensional axisymmetric finite element analyses. A three dimensional finite element model with a surface crack was also designed to evaluate the effect of internal pressure and heat transfer on crack face, and the resulting stress intensity factors from the finite element analyses were compared with those for ASME Sec. XI and Raju-Newman's stress intensity factor solution. As a result, the validity of currently available stress intensity factor solutions for a surface crack was reviewed in the presence of geometrical complexity, heat transfer and internal pressure.

High Intensity Acoustic Test for KOMPSAT-2 STM (다목적 실용위성 2호 구조-열모델의 음향 환경 시험)

  • 김홍배;문상무;김영기;우성현;이상설;김성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.862-866
    • /
    • 2002
  • High intensity vibro-acoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. To qualify vibro-acoustic environment during its flight, High Intensity Acoustic Test was performed for KOMPSAT-2(Korea Multi-Purpose SATellite) STM(Structural Thermal Model). This paper presents the detailed description on the high intensity acoustic test for KOMPSAT-2. Additionally the test results was compared with the analysis ones, which were estimated with 3-D SEA(Statistical Energy Analysis) model.

  • PDF

Finite Element Analysis of Subsurface Multiple Horizontal Cracks Propagation in a Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이상윤;김석삼;권영두
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.373-380
    • /
    • 2000
  • Finite element analysis is performed on the subsurface crack propagation in brittle materials due to sliding contact. The sliding contact is simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. The single crack, coplanar cracks and parallel cracks are modeled to investigate the interaction effects on the crack growth in contact fatigue. The crack location is fixed and the friction coefficients between asperity and half-space are varied to analyze the effect of surface friction on stress intensity factor for horizontal cracks. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factors. With a coplanar crack, the stress intensity factor was increased. However, with a parallel crack, the stress intensity factor was decreased. These results indicate that the interaction of a coplanar crack increases fatigue crack propagation, whereas that of a parallel crack decreases it.

Derivation of Probable Rainfall Intensity Formula at Masan District (마산지방 확률강우강도식의 유도)

  • Kim, Ji-Hong;Bae, Deg-Hyo
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.

  • PDF

PIV Measurement on the Flow Characteristics of a Sharp Plane with Inclined Angles (각도변화에 따른 Sharp Plane의 유동특성에 관한 PIV계측)

  • 최종웅;한종석;강호근;문종춘;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.28-33
    • /
    • 2001
  • Animation understanding and time-resolved analysis of the wake characteristic of 2-D sharp plane flows were executed by applying the multi-vision PIV to a sharp plane(three angle of attacks : $15^{\circ}, \; 30^{\circ}, \; 45^{\circ}$) submerged within a circulating water channel($Re = 2{\times}10^4$). The macroscopic shedding patterns were discussed in terms of instantaneous velocity, vorticity, velocity profile, kinetic energy, turbulent intensity, frequency analysis. Particularly, the time-averaged distribution of turbulent intensity in each experimental cases revealed separate island-like small regions magnitude of turbulent intensity was always strengthened.

  • PDF

Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Kia, Mehdi;Cao, Maosen
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • In this study, it has been tried to prepare an analytical fragility curves for isolated straight continues highway bridges by considering different spectral intensity measures. A three-span concrete isolated bridge has been selected and the seismic performance of the bridge has been improved by Lead Rubber Bearing (LRB). Incremental Dynamic Analysis (IDA) is applied to the bridge in longitudinal direction. A suite of 14 earthquake ground motions from medium to sever motions are scaled and used for nonlinear time history analysis. Fragility function considers the relationship of earthquake intensity measures (IM) and probability of exceeding certain Damage State (DS). A full three dimensional finite element model of the isolated bridge has been developed and analyzed. A wide range of different intensity measures are selected and the optimal intensity measure which has the less dispersion is proposed.

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

A method to generate virtual intensity at arbitrary position: Methodology and its physical meanings (임의의 위치에 가상 인텐시티 형성 방법: 방법론과 그 물리적 의미)

  • 최정우;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.652-657
    • /
    • 2003
  • This paper proposes a method to generate virtual intensity field in space. The sound field of a zone enclosing the listener position is controlled to have maximum acoustic intensity to the desired direction. In order to control acoustic intensity of a zone, space-averaged active intensity is introduced. The ratio of space-averaged active intensity and control effort is defined as a cost function and expressed as a function of source control signals. It is shown that the cost function represents radiation efficiency of multiple sources. The control signals maximizing the cost function is found through eigenvalue analysis. The proposed method is verified by numerical simulations performed in free field condition, and the results provide a relation between wavelength and the size of controllable intensity field.

  • PDF