• Title/Summary/Keyword: Intelligent video surveillance

Search Result 126, Processing Time 0.035 seconds

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Object-based video summarization in a wide-area surveillance system (광범위한 지역 감시시스템에서의 물체기반 비디오 요약)

  • Kwon, HyeYoung;Lee, Kyoung-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.544-548
    • /
    • 2006
  • 본 논문에서는 광범위한 지역을 감시하기 위해 설치된 여러 대의 카메라로부터 획득된 비디오에 대해 물체를 기반으로 한 비디오 요약 시스템을 제안한다. 제안된 시스템은 시야가 겹쳐지지 않은 다수의 CCTV 카메라를 통해서 촬영한 비디오들을 30분 단위로 나누어 비디오 데이터베이스를 구축하고 시간별, 카메라별 비디오 검색이 가능하다. 비디오에서 물체기반 키프레임을 추출하여 카메라별, 사람별로 비디오를 요약할 수 있도록 하였다. 또한 임계치에 따라 키프레임 검색정도를 조절함으로써 비디오 요약정도를 조절할 수 있다. 이렇게 검색된 키프레임에 대한 카메라별, 시간별 통계를 통해서 감시지역의 물체기반 이벤트를 간단히 확인해 볼 수 있다.

  • PDF

Thermal Imagery-based Object Detection Algorithm for Low-Light Level Nighttime Surveillance System (저조도 야간 감시 시스템을 위한 열영상 기반 객체 검출 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • In this paper, we propose a thermal imagery-based object detection algorithm for low-light level nighttime surveillance system. Many features selected by Haar-like feature selection algorithm and existing Adaboost algorithm are often vulnerable to noise and problems with similar or overlapping feature set for learning samples. It also removes noise from the feature set from the surveillance image of the low-light night environment, and implements it using the lightweight extended Haar feature and adaboost learning algorithm to enable fast and efficient real-time feature selection. Experiments use extended Haar feature points to recognize non-predictive objects with motion in nighttime low-light environments. The Adaboost learning algorithm with video frame 800*600 thermal image as input is implemented with CUDA 9.0 platform for simulation. As a result, the results of object detection confirmed that the success rate was about 90% or more, and the processing speed was about 30% faster than the computational results obtained through histogram equalization operations in general images.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Small UAV tracking using Kernelized Correlation Filter (커널상관필터를 이용한 소형무인기 추적)

  • Sun, Sun-Gu;Lee, Eui-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Recently, visual object detection and tracking has become a vital role in many different applications. It spans various applications like robotics, video surveillance, and intelligent vehicle navigation. Especially, in current situation where the use of UAVs is expanding widely, detection and tracking to soot down illegal UAVs flying over the sky at airports, nuclear power plants and core facilities is becoming a very important task. The remarkable method in object tracking is correlation filter based tracker like KCF (Kernelized Correlation Filter). But it has problems related to target drift in tracking process for long-term tracking. To mitigate the target drift problem in video surveillance application, we propose a tracking method which uses KCF, adaptive thresholding and Kalman filter. In the experiment, the proposed method was verified by using monochrome video sequences which were obtained in the operational environment of UAV.

Loitering Behavior Detection Using Shadow Removal and Chromaticity Histogram Matching (그림자 제거와 색도 히스토그램 비교를 이용한 배회행위 검출)

  • Park, Eun-Soo;Lee, Hyung-Ho;Yun, Myoung-Kyu;Kim, Min-Gyu;Kwak, Jong-Hoon;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.171-181
    • /
    • 2011
  • Proposed in this paper is the intelligent video surveillance system to effectively detect multiple loitering objects even that disappear from the out of camera's field of view and later return to a target zone. After the background and foreground are segmented using Gaussian mixture model and shadows are removed, the objects returning to the target zone is recognized using the chromaticity histogram and the duration of loitering is preserved. For more accurate measurement of the loitering behavior, the camera calibration is also applied to map the image plane to the real-world ground. Hence, the loitering behavior can be detected by considering the time duration of the object's existence in the real-world space. The experiment was performed using loitering video and all of the loitering behaviors are accurately detected.

Proposed CCPS model for comprehensive security management of CCTV (영상정보처리기기(CCTV)의 포괄적 보안관리를 위한 암호·인증·보호·체계(CCPS) 모델 제안)

  • Song, Won-Seok;Cho, Jun-Ha;Kang, Seong-Moon;Lee, MinWoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.657-660
    • /
    • 2021
  • A video information processing system (CCTV) requires comprehensive administrative, physical, and technical security management to collect, transmit and store sensitive information. However, there are no regulations related to video information processing, certification methods for the technology used, and application standards suitable for security technology. In this paper, we propose a cryptography, certification, protection, system (CCPS) model that can protect the system by including encryption technology for application to the video information processing system and authentication measures for the technology used in the system configuration.

  • PDF

The National Highway, Expressway Tunnel Video Incident Detection System performance analysis and reflect attributes for double deck tunnel in great depth underground space (국도, 고속국도 터널 영상유고감지시스템 성능분석 및 대심도 복층터널 특성반영 방안)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1325-1334
    • /
    • 2016
  • The video incident detection System is a probe for rapid detecting the walker, falling, stopped, backwards, smoke situation in tunnel. Recently, the importance is increases from the downtown double deck tunnel in great depth underground space[1], but the legal basis is weak and the vulnerable situation experimental data. So, In this paper, we introduce a long-term log data analysis information in the tunnenl video incident detection system installed and experimental results in order to verify the feasibility of apply to video incident detection system for the double deck tunnel. It is proposed a few things about derives the problem of existing video incident detection system, improvements and reflect attributes for double deck tunnel. The contents described in this paper will contribute to refine the prototype of video incident detection system will apply to future double deck multi-layer tunnels.

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

An Adaptive Background Formation Algorithm Considering Stationary Object (정지 물체를 고려한 적응적 배경생성 알고리즘)

  • Jeong, Jongmyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.55-62
    • /
    • 2014
  • In the intelligent video surveillance system, moving objects generally are detected by calculating difference between background and input image. However formation of reliable background is known to be still challenging task because it is hard to cope with the complicated background. In this paper we propose an adaptive background formation algorithm considering stationary object. At first, the initial background is formed by averaging the initial N frames. Object detection is performed by comparing the current input image and background. If the object is at a stop for a long time, we consider the object as stationary object and background is replaced with the stationary object. On the other hand, if the object is a moving object, the pixels in the object are not reflected for background modification. Because the proposed algorithm considers gradual illuminance change, slow moving object and stationary object, we can form background adaptively and robustly which has been shown by experimental results.